Доказательство утверждения, частным случаем которого является великая теорема Ферма
Часть 2
Возможны случаи: либо , либо .
**********
Последнее утверждение (либо , либо ) в дальнейшем будем на
зывать «исключением» из общего правила.
*********
Часть первая(Утверждения 1)
Уравнение (,- натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Доказательство
Понятно, что доказательство достаточно рассмотреть для - простого.
Докажем данное «Утверждение 1» методом от противного. Предположим, что уравнение разрешимо в отличных от нуля попарно взаимно простых целых числах , и . И если в конце доказательства мы придем к противоречию, доказав, что числа , и не являются попарно взаимно простыми целыми числами, то это будет означать, что «Утверждение 1» справедливо.
Из уравнения (1) следует:
(2),
где - четное целое число, т.к. и - нечетные;
≠ 0, т.к. и - взаимно простые нечетные целые числа, не равные нулю;
- нечетное целое число при и - нечетных, - простом.
********
Примечание
То, что - нечетное число при и - нечетных, хорошо известный факт в теории чисел.
Для подтверждения данного факта достаточно использовать разложение бинома
Ньютона , , , … и тогда получим для :
- сумму трех нечетных слагаемых, равную нечетному числу.
Для :
- сумму пяти нечетных слагаемых, равную нечетному числу.
Для степени - простой можно доказать, что при и нечетных
(3) - сумма нечетных слагаемых, равная нечетному числу (Алексеев С.Ф. Два обобщения классических формул // Квант. – 1988. - №10. – С. 23).
*******
Пусть (4),
где - нечетное число (на основании (3)).
Тогда уравнение (2) примет вид:
(5),
где - четное число, которое можно представить в виде
(6),
где - целое число (при = 0 а = 0, что противоречит нашему допущению),
(4) – нечетное число.
Тогда из соотношения (5) с учетом (6) получаем:
, т.е. (7), где - целое число (), - натуральное число.
Сумму же нечетных чисел и обозначим через , т.е.
(8),
где - целое число (, т.к. и - взаимно простые нечетные целые числа, не равные нулю).
Из (7) и (8) определим и :
=> =>
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах