Доказательство утверждения, частным случаем которого является великая теорема Ферма
*******
Случай 8
Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13′), (14´) и (15´), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32´´), (31), (29´´´) и (24´), т.е.
c="images/referats/7515/image408.png">(31´),(29´´),
, (24), где - взаимно простые целые нечетные числа.
Но этот случай нас не интересует, т.к. с не является целым числом.
********
Вывод
Итак, после анализа полученных решений в Случаях 1, …,8, уравнение (11) , где c и b – взаимно простые целые нечетные числа, имеет решения в следующих целых числах:
а) ; b ; ; ;
б) ; ; ; .
********
Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 2 и его результат, полностью совпадают с исследованием решений уравнения (15) (в аналогичных случаях при доказательстве Утверждения 1) и с его результатом.
Действительно, вот, например, результаты исследований уравнения (15) в первых 4-х случаях Условия 1(Утверждение 1, Часть 2):
1. (16) 2. (16´) (39´)
(17´) (37) (17) (37´)
(18) (18´) (38´)
(19) (33) (19´) (33´)
3. (16) (39´´) 4. (16´) (39´´´)
(17´) (37) (17) (37´)
(18) (38´´) (18´) (38´´´)
(19´) (33´) (19) (33).
А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2,Часть 2):
1. (12) 2. (12´) (30´)
(13´) (28) (13) (28´)
(14) (29) (14´) (29´)
(15) (24) (15´) (24´)
3. (12) (30´´) 4. (12´) (30´´´)
(13´) (28) (13) (28´)
(14)(29´´) (14´) (29´´´)
(15´) (24´) (15) (24).
Наблюдается полное совпадение результатов (здесь подразумевается, что решения уравнения (15) c и b в верхних 4-х случаях соответствуют решениям уравнения (11)
с2 и b2 в нижних 4-х случаях). То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.
********
Поэтому нетрудно понять, что остальные результаты исследований случаев с 9-го по 28-й в данном доказательстве Утверждения 2 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждения 1) тоже совпадут и никаких новых решений нам не дадут, кроме как:
либо , либо , либо c и bне являются целыми числами, либо c и b – четные числа, чего не должно быть.
********
Из этого набора решений уравнения (11) нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - четное натуральное число, т.е. либо , либо .
*******
Но в теории чисел хорошо известно (Постников М.М. Введение в теорию алгебраических чисел. – М .- Наука. – 1982. - С. 13), что для четных степеней уравнения (где, q=2 q) - показатели четные при ≠ 0 и q≠ 0 - натуральных, в уравнении целочисленные его решения (если они существуют) должны удовлетворять неравенствам:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах