Доказательство утверждения, частным случаем которого является великая теорема Ферма

********

Мы рассмотрели случай, когда перед скобками в (12+), …, (15+) стояли «плюсы».

Случай, когда перед теми же скобками стоят «минусы» (Случай «-»), аналогичен вышерассмотренному. Вывод тот же. (Смотри Случай «-» на стр.8.)

*********

Примечание

Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоятвсевозм

ожные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 3.

********

Т.к. уравнение (11) симметрично для с2 и b2, (для уравнения 11 они равнозначны), то с2 и b2могут меняться своими выражениями (Cи В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.

Условие 2 (начало).

с2 = В

b2 = С

= N

«Новые» случаи «+» и «-».

(12´±) c2 В

(13´±) b2С

(14±) N

(15±) К.

И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.36)), !

Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (14±)) при -четном.

Однако, если - четное, то (в ((12´±) и ((13´±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Примечание

Осталось исследовать еще 14 случаев,рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).

Но об этом во 2-ой части данного Утверждения 3.

********

Уравнение (11) симметрично и для и для (для уравнения (11) они равнозначны), которые тоже могут меняться своими выражениями (Nи К). Это свойство назовем «похожим свойством и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых и меняются своими выражениями (Nи К)).

Условие 3.

с2 = С

b2 = B

= К

«Похожие» случаи «+» и «-».

(12±) c2 = ± () = ± С

(13±) b2 = ± () = ± В

(14´±) = = ±К

(15´±) = ± N.

Согласно одному из Выводов (формула (10) пропорционально 2 (явно), при . Но это возможно, глядя на четное (15´±) = ±N= ±() только при t-четном, при которых в (12±) и (13±) cи b – четные, чего не должно быть.

Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоятвсевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение (стр.10), подобное для проведено при доказательстве Утверждения 1), мы придем к прежнему результату: cи b – четные, чего не должно быть.

Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Вывод

1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 уравнение (1) (1), где 3 – нечетное натуральное число, не имеет решений в целых попарно взаимно простых отличных от нуля числах.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы