Доказательство утверждения, частным случаем которого является великая теорема Ферма
********
Мы рассмотрели случай, когда перед скобками в (12+), …, (15+) стояли «плюсы».
Случай, когда перед теми же скобками стоят «минусы» (Случай «-»), аналогичен вышерассмотренному. Вывод тот же. (Смотри Случай «-» на стр.8.)
*********
Примечание
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоятвсевозм
ожные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 3.
********
Т.к. уравнение (11) симметрично для с2 и b2, (для уравнения 11 они равнозначны), то с2 и b2могут меняться своими выражениями (Cи В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало).
с2 = В
b2 = С
= N
«Новые» случаи «+» и «-».
(12´±) c2 =± В
(13´±) b2=±С
(14±) =± N
(15±) =±К.
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.36)), !
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (14±)) при -четном.
Однако, если - четное, то (в ((12´±) и ((13´±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось исследовать еще 14 случаев,рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).
Но об этом во 2-ой части данного Утверждения 3.
********
Уравнение (11) симметрично и для и для (для уравнения (11) они равнозначны), которые тоже могут меняться своими выражениями (Nи К). Это свойство назовем «похожим свойством и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых и меняются своими выражениями (Nи К)).
Условие 3.
с2 = С
b2 = B
= К
«Похожие» случаи «+» и «-».
(12±) c2 = ± () = ± С
(13±) b2 = ± () = ± В
(14´±) = = ±К
(15´±) = ± N.
Согласно одному из Выводов (формула (10) пропорционально 2 (явно), при . Но это возможно, глядя на четное (15´±) = ±N= ±() только при t-четном, при которых в (12±) и (13±) cи b – четные, чего не должно быть.
Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоятвсевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение (стр.10), подобное для проведено при доказательстве Утверждения 1), мы придем к прежнему результату: cи b – четные, чего не должно быть.
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Вывод
1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 уравнение (1) (1), где ≥ 3 – нечетное натуральное число, не имеет решений в целых попарно взаимно простых отличных от нуля числах.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах