Доказательство утверждения, частным случаем которого является великая теорема Ферма
Выразим из (25) и (26) :
=>
=> .
По условию dth=35 height=19 src="images/referats/7515/image113.png">должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17′) и (18), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для b:
, т.к. из (29) вытекает .
Итак, .
Учитывая (35), получим => .
Теперь, с учетом (38),можно получить окончательное выражение для с (из (34)):
, т.е. .
Таким образом, уравнение (15), решениями которого являются (16), (17′), (18) и (19), в конечном счете имеет следующие решения:
, ,
, ,
где - взаимно простые нечетные целые числа.
*******
Случай 2
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17′), (18) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39), (37), (38) и (33), т.е.
, ,
, ,
где - взаимно простые нечетные целые числа.
*******
Случай 3
(16)
(17′)
(18)
(19′).
Тогда сумма имеет вид:
Учитывая (14) и (19′), можно получить разность :
-=> (26′).
Выразим из (25) и (26′) :
=>
=> .
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(30′), (31′), а их сумма .
Т.к. из (8) , то => .
Из (19´) с учетом (29) выразим :
, т.е. (33´).
Т.о., , ,
где ,
т.е. (34´), (35´), выражения которых, с учетом (33´), полностью совпадают с (9) и (10).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах