Доказательство утверждения, частным случаем которого является великая теорема Ферма
Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Вывод. Следовательно, это уравнение (1) в данном Условии 1 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Казалось бы, 1-я часть «Утверждения 1» доказана. На самом деле у уравнения (15) есть еще решения. Нетрудно догадаться, что решениями уравнения (15) являются следующие выражения n, :
Случаи «+» и «-».
(16±) ;
(17±) ;
(18±) ;
(19±) .
Мы рассмотрели случай, когда перед скобками в (16±), …,(19±) стояли только «плюсы» (Случай «+»)
******
Случай «-».
(16-) ;
(17-) ;
(18-) ;
(19-) .
Случай, когда перед теми же скобками стоят только «минусы» (Случай «-»), аналогичен вышерассмотренному Случаю «+».
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этом Случае «-» является не нечетным, а четным числом, что возможно (из (18-)) при -четном.
Однако, если - четное, то (в (16-) и (17-)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в Случае «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание.
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоятвсевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 1.
********
Т.к. уравнение (15) симметрично для с и b (для уравнения (15) они равнозначны), то сиbмогут обмениваться не только знаками «+» и «-», но и своими выражениями (Cи В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало)
с =B
b = С
n = N
«Новые» случаи «+» и «-».
(16´±) c =± В
(17´±) b =±С
(18±) =±N
(19±) =±К
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (18±)) при -четном.
Однако, если - четное, то (в ((16´±) и ((17´±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось рассмотреть еще 14 случаев (пояснение ниже),рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом во 2-ой части данного Утверждения 1.
********
Уравнение (15) симметрично и для n и для (для уравнения 15 они равнозначны), которые тоже могут меняться своими выражениями (Nи К). Это свойство назовем «похожим свойством n и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых nименяются своими выражениями (Nи К )).
Условие 3
c = C
b = B
n = К
N
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах