Геометрия Лобачевского
Укажем некоторые теоремы, которые следуют из аксиом конгруэнтности.
1. Отношение конгруэнтности отрезков является отношением эквивалентности на множестве отрезков.
2. В равнобедренном треугольнике углы при основании равны.
По Гильберту, треугольник ABC называется конгруэнтным треугольнику
А'В'С' (∆АВС >∆А'В'С’), если АВ А'В', ВС В'С', СА С'А', АА АА', АВ АВ', АС АС'.
3. Первый, второй и третий признаки равенства треугольников.
4. Отношение конгруэнтности углов является отношением эквивалентности на множестве углов.
5. Внешний угол треугольника больше каждого угла треугольника, несмежного с ним.
6. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона."
7. Любой отрезок имеет одну и только одну середину.
8. Любой угол имеет одну и только одну биссектрису.
Группа IV. Аксиомы непрерывности.
IV1 (аксиома Архимеда). Пусть АВ и CD — какие-нибудь отрезки. Тогда на прямой АВ существует конечное множество точек А1, А2, ., Аn, таких, что выполняются условия: а) А — А1 — A2,, A1 — А2 — Аз, ., An - 2 — An - 1 — An; б) АА1 A1A2 . Аn – 1An CD; в) А — В — An.
IV2 (аксиома Кантора). Пусть на произвольной прямой а дана бесконечная последовательность отрезков А1В1, A2B2, …, из которых каждый последующий лежит внутри предыдущего и, кроме того, для любого отрезка CD найдется натуральное число п, такое, что АnВn < CD. Тогда на прямой а существует точка М, принадлежащая каждому из отрезков данной последовательности.
Группа V. Аксиома параллельности.
Пусть а — произвольная прямая, а А — точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через A и не пересекающей а.
В §3 мы доказали, что эта аксиома эквивалентна V постулату Евклида.
Аксиома Лобачевского. Параллельные прямые по Лобачевскому
Геометрия Лобачевского (или гиперболическая геометрия) основана на аксиомах групп I—IV абсолютной геометрии и на следующей аксиоме Лобачевского.
V*. Пусть а — произвольная прямая, а А — точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не менее двух прямых, проходящих через точку А и не пересекающих прямую а.
Ясно, что все определения и теоремы абсолютной геометрии имеют место и в геометрии Лобачевского. Из аксиомы V* непосредственно следует, что если даны произвольная прямая а и точка А, не лежащая на ней, то существует бесконечное множество прямых, проходящих через точку А и не пересекающих прямую а. В самом деле, по аксиоме V* существуют две прямые, которые обозначим через b и с, проходящие через точку А и не пересекающие прямую а (рис. 2-1). Прямые b и с образуют две пары вертикальных углов, которые на рисунке 2-1 обозначены цифрами 1, 2 и 3, 4. Прямая а не пересекает прямые b и с, поэтому все ее точки принадлежат внутренней области одного из четырех углов 1, 2, 3, 4, например внутренней области угла 1. Тогда, очевидно, любая прямая, проходящая через точку А и лежащая внутри вертикальных углов 3 и 4, не пересекает прямую а (например, прямые l и d на рис. 2-1).
В отличие от определения параллельных прямых по Евклиду в геометрии Лобачевского параллельными к данной прямой называются (только некоторые прямые из тех, которые не пересекают данную прямую. Чтобы ввести это понятие, условимся считать, что все прямые, рассматриваемые нами, являются направленными прямыми. Поэтому мы их будем обозначать двумя буквами, например UV, считая, что точка U предшествует точке V. Предполагается также, что точки U и V выбраны так, что рассматриваемые нами точки на этой прямой лежат между точками U и V.
Введем следующее определение. Прямая АВ называется параллельной прямой CD, если эти прямые не имеют общих точек и, каковы бы ни были точки Р и Q, лежащие соответственно на прямых АВ и CD, любой внутренний луч угла QPB пересекает луч QD (рис. 2-2). Если прямая АВ параллельна прямой CD, то пишут так: AB||CD.
Имеет место следующий признак параллельности прямых.
Теорема 1. Если прямые АВ и CD не имеют общих точек и существуют точки Р и Q, такие, что Р є АВ и Q є CD, и любой внутренний луч угла QPB пересекает луч QD, то AB||CD.
доказательство
Из предыдущего изложения еще не следует, что существуют параллельные прямые по Лобачевскому. Докажем теорему о существовании параллельных прямых.
Теорема 2. Пусть АВ — произвольная направленная прямая, а М — точка, не лежащая на ней. Тогда в плоскости МАВ существует одна и только одна прямая CD, проходящая через точку М и параллельная прямой АВ, т. е. CD || AB.
доказательство
Пусть М — точка, не лежащая на прямой a, a MN — перпендикуляр, проведенный из точки М на прямую а. Выберем на прямой a две точки A и В так, чтобы А — N — В. Из теоремы 2 следует, что через точку М проходит единственная прямая CD, параллельная направленной прямой АВ, и единственная прямая EF, параллельная направленной прямой ВА (рис. 2-7).
В ходе доказательства теоремы 2 мы установили, что углы DMN и FMN острые, поэтому CD и EF—различные прямые. Докажем, что DMN = FMN. Пусть, напротив, DMN ≠ FMN, например DMN > FMN. Рассмотрим луч MF', симметричный лучу MF относительно прямой MN (луч MF' не изображен на рис. 2-7). Этот луч является внутренним лучом угла DMN. Так как MF не пересекает прямую АВ, то и MF' не пересекает эту прямую. Но это противоречит определению параллельности прямых CD и АВ.
Таким образом, через каждую точку М, не лежащую на данной прямой а, проходят две прямые, параллельные прямой а, в двух разных направлениях. Эти прямые образуют равные острые углы с перпендикуляром MN, проведенным из точки М к прямой а. Каждый из этих углов называется углом параллельности в точке М относительно прямой а.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах