Геометрия Лобачевского

Векторное пространство V, в котором скалярное произведение определено при помощи указанной выше билинейной формы g, называется псевдоевклидовым векторным пространством индекса k.

В псевдоевклидовом пространстве скалярный квадрат вектора ≠ 0

может быть положительным, отрицательным или нулем. Например, если в базисе В = () квадратичная форма φ () имеет нормальный вид:

φ() = (x1)2+ …+ (xn-k)2 – (xn-k+1)2 – … – (xn)2 , (1)

то, очевидно, для векторов базиса имеем:

, ,…, ,, …,.

Поэтому длина каждого из векторов равна единице; это единичные векторы. Каждый из векторов имеет мнимую длину i; назовем эти векторы мнимоединичными.

Вектор , для которого = 0, называется изотропным. Длины этих векторов равны нулю. Каждый из векторов , где и — векторы базиса В при р п — k, q > n — k, является изотропным, так как по формуле (1)

φ() = 1 – 1=0.

По-прежнему два вектора , будем называть ортогональными, если = 0. Векторы базиса В, в котором квадратичная форма имеет нормальный вид (1), попарно ортогональны, так как эти векторы попарно сопряжены относительно билинейной формы g(,).

Таким образом, базис В состоит из единичных и мнимоединичных попарно ортогональных векторов. Такой базис назовем ортонормированным. Так как индекс квадратичной формы φ () не зависит от способа приведения этой формы к нормальному виду, то все ортонормированные базисы псевдоевклидова векторного пространства V содержат одинаковое число мнимоединичных векторов; это число равно индексу пространства.

Пусть В — ортонормированный базис, а векторы и в этом базисе имеют координаты (xi) и (уi). Тогда = хiи у = yi, поэтому

=x1y1 + x2y2 + …+ xn-kyn-k – xn-k+1yn-k+1 - …- xnyn . (2)

Докажем следующую теорему.

Теорема. В псевдоевклидовом векторном пространстве V индекса 1 для любых двух векторов мнимой длины справедливо неравенство

()2

причем знак равенства в этой формуле имеет место тогда и только тогда, когда векторы и коллинеарны.

доказательство

Следствие. В псевдоевклидовом векторном пространстве индекса 1 для любых двух векторов , мнимой длины справедливо неравенство

(3)

Пусть V — псевдоевклидово векторное пространство индекса размерности п + 1 над полем R (n = 2,3) и g (,) — билинейная форма, с помощью которой в пространстве V определено скалярное произведение. Мы будем рассматривать только автоморфизмы пространства V, т. е. такие линейные преобразования этого пространства, которые сохраняют скалярное произведение векторов (и значит, сохраняют длины векторов). Обозначим через Ω* множество всех векторов мнимой длины пространства V. Очевидно, что если φ — автоморфизм пространства V, то φ (Ω*) = Ω*.

Множество Е ≠ 0 называется п-мерным гиперболическим пространством Лобачевского (и обозначается через ), если задано отображение

π : Ω*→E,

удовлетворяющее следующим аксиомам:

1) π— сюръекция;

2) π() = π() тогда и только тогда, когда и коллинеарны.

Систему аксиом 1—2 пространства Лобачевского обозначим через .

Элементы множества Е называются точками. Так же как и в случае проективного пространства, если X = π (), то будем говорить, что точка X порождена вектором .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы