Геометрия Лобачевского

Не все свойства окружности, известные нам из школьного курса геометрии, имеют место на плоскости Лобачевского. Например, теорема о том, что угол, вписанный в окружность и опирающийся на диаметр, является прямым углом, неверна на плоскости Лобачевского. В самом деле, пусть угол АСВ, вписанный в окружность

с центром О, опирается на диаметр АВ (рис. 2-23). Проведем радиус ОС и рассмотрим два равнобедренных треугольника ОАС и ОВС. Так как A = АСО и B = BCO, то A + В = АСО + ВСО =АСВ. Следовательно, σABC = A + В + АВС = 2АСВ. Значит, АСВ = σABC . Так как σABC < 2d, то АСВ < d, т. е. АСВ — острый угол.

Эквидистанта. Эквидистантой называется фигура, которая состоит из всех точек полуплоскости с границей и, равноудаленных от этой прямой. Прямая и называется базой эквидистанты, а перпендикуляр, проведенный из любой точки эквидистанты на базу,— высотой. Высотой называется также длина h этого перпендикуляра.

С эквидистантой связан пучок расходящихся прямых — множество всех прямых, перпендикулярных к базе эквидистанты. Прямые этого пучка называются осями эквидистанты. Многие свойства эквидистанты аналогичны свойствам окружности.

Убедимся в том, что эквидистанта — кривая линия.

Теорема 1. Любая прямая, лежащая в плоскости эквидистанты, пересекается с эквидистантой не более, чем в двух точках.

доказательство

Рассмотрим другие свойства эквидистанты.

1. Эквидистанта симметрична относительно любой своей оси.

доказательство

2. В каждой точке эквидистанты существует касательная, которая перпендикулярна к оси, проведенной через точку касания.

доказательство

Учитывая это свойство, мы можем говорить, что эквидистанта является ортогональной траекторией пучка расходящихся прямых, перпендикулярных к базе эквидистанты (см. рис. 2-22, б).

Хордой эквидистанты назовем любой отрезок, соединяющий две точки эквидистанты.

3°. Любая прямая, содержащая хорду эквидистанты, является секущей равного наклона к осям, проходящим через концы хорды.

доказательство

4°. Серединный перпендикуляр к любой хорде эквидистанты является ее осью.

Орицикл. Прежде чем ввести понятие орицикла, докажем следующую лемму.

Лемма. Через каждую точку одной из двух параллельных прямых проходит одна и только одна секущая равного наклона к этим прямым.

доказательство

Пусть на плоскости задан пучок параллельных прямых. На множестве Ω всех точек плоскости введем бинарное отношение ∆ следующим образом. Будем говорить, что точки A и В находятся в отношении ∆, если они совпадают или прямая АВ является секущей равного наклона к прямым данного пучка, проходящим соответственно через точки А и В. Из этого определения непосредственно следует, что отношение ∆ удовлетворяет условиям рефлексивности и симметричности. Можно также доказать, что оно удовлетворяет условию транзитивности. Каждый элемент фактор-множества Ω/∆ называется орициклом (или предельной линией). Прямые данного пучка называются осями орицикла. Если задан пучок параллельных прямых, то через каждую точку А плоскости проходит один и только один орицикл, который представляет собой класс эквивалентности КА по отношению ∆. Это множество состоит из точки А и всех таких точек X плоскости, что АХ -секущая равного наклона к прямым данного пучка, проходящим через точки А и X.

Если даны направленная прямая UV и на ней некоторая точка А, то тем самым однозначно определяется орицикл, проходящий через точку А с осью UV.

Свойства орицикла аналогичны свойствам окружности и эквидистанты.

Теорема 2. Любая прямая, лежащая в плоскости орицикла, пересекается с орициклом не более чем в двух точках.

доказательство

Орицикл симметричен относительно любой своей оси и является ортогональной траекторией пучка его параллельных осей (см. рис 2-22, в).

Любые два орицикла на плоскости Лобачевского равны.

Гиперболическое пространство

Пусть V — векторное пространство размерности п над полем R (в дальнейшем будем рассматривать значения п = 2,3). Зададим билинейную форму g: V V → R, такую, чтобы квадратичная форма φ () = g (,) была бы невырожденной квадратичной формой индекса k > 0. Число g (,)R назовем скалярным произведением векторов , и обозначим через ·или , а число длиной (нормой) вектора . Таким образом, если , то , а если , то , где b > 0 и i2 = -1.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы