Моделирование нейронных сетей для прогнозирования стоимости недвижимости
Математическую модель нейрона, а также разработанные на ее основе программные и аппаратные реализации называют искусственным, или формальным нейроном.
Принципиальная схема искусственного нейрона представлена на рисунке 4.2.
Рисунок 4.2 - Принципиальная схема искусственного нейрона
Искусственный нейрон имитирует в
первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рисунке 4.2 представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, ., xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности, обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, w2,…, wn, и поступает на суммирующий блок, обозначенный Σ. Каждый вес соответствует «силе» одной биологической синаптической связи. Множество весов в совокупности обозначается вектором W. Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который имеет название NET. В векторных обозначениях это может быть компактно записано следующим образом: NET = XW.
Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией
, (4.1)
где К - постоянная, пороговой функции, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.
Рисунок 4.3 - Искусственный нейрон с активационной функцией
На рисунке 4.3 блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется (сжимающей) функцией. В качестве (сжимающей) функции часто используется логистическая или сигмоидальная (S-образная) функция. Эта функция математически выражается как
.(4.2)
Таким образом,
(4.3)
По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным.
Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.
Свою силу нейронные сети черпают, во-первых, из распараллеливания обработки информации и, во-вторых, из способности самообучаться, т.е. создавать обобщения. Под термином обобщение понимается способность получать обоснованный результат на основании данных, которые не встречались в процессе обучения. Эти свойства позволяют нейронным сетям решать сложные (масштабные) задачи, которые на сегодняшний день считаются трудноразрешимыми. Однако на практике при автономной работе нейронные сети не могут обеспечить готовые решения. Их необходимо интегрировать в сложные системы. В частности, комплексную задачу можно разбить на последовательность относительно простых, часть из которых может решаться с помощью НС.
Итак, приведем некоторые преимущества и достоинства нейронных сетей перед традиционными вычислительными системами.
1. Решение задач при неизвестных закономерностях.
2. Устойчивость к шумам во входных данных.
3. Адаптация к изменениям окружающей среды.
4. Потенциальное сверхвысокое быстродействие.
5. Отказоустойчивость при аппаратной реализации нейронной сети.
Нейросетевые технологии можно использовать во многих областях человеческой деятельности, например:
1. Экономика и бизнес. Предсказание рынков, автоматический дилинг, оценка риска невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, автоматическое рейтингование, оптимизация портфелей, оптимизация товарных и денежных потоков, автоматическое считывание чеков и форм, безопасность транзакций по пластиковым карточкам.
2. Медицина. Обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
3. Авионика. Обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета.
4. Связь. Сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
5. Интернет. Ассоциативный поиск информации, электронные секретари и агенты пользователя в сети, фильтрация информации в push-системах, коллаборативная фильтрация, рубрикация новостных лент, адресная реклама, адресный маркетинг для электронной торговли.
6. Автоматизация производства. Оптимизация режимов производственного процесса, комплексная диагностика качества продукции (ультразвук, оптика, гамма-излучение), мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.
7. Политические технологии. Анализ и обобщение социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, визуализация социальной динамики населения.
8. Безопасность и охранные системы. Системы идентификации личности, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэро-космических снимков, мониторинг информационных потоков, обнаружение подделок.
9. Ввод и обработка информации. Обработка рукописных чеков, распознавание подписей, отпечатков пальцев и голоса. Ввод в компьютер финансовых и налоговых документов.
10. Геологоразведка. Анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели