Методы решения уравнений линейной регрессии
Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет .
Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.
Проверим значимость полученного уравнения с помощью F–критерия Фишера.
F–статистика определена программой
РЕГРЕССИЯ (таблица 2) и составляет .
Критическое значение найдено для уровня значимости и чисел степеней свободы , .
Схема критерия:
Сравнение показывает: ; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.
Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле
с помощью функции ABS (таблица 5).
ВЫВОД ОСТАТКА | |||
Наблюдение |
Предсказанное Y |
Остатки |
Отн. Погр-ти |
1 |
27,14150943 |
6,858490566 |
20,17% |
2 |
29,30660377 |
-3,306603774 |
12,72% |
3 |
30,02830189 |
-6,028301887 |
25,12% |
4 |
35,08018868 |
2,919811321 |
7,68% |
5 |
35,80188679 |
-0,801886792 |
2,29% |
6 |
40,13207547 |
-0,132075472 |
0,33% |
7 |
45,90566038 |
-3,905660377 |
9,30% |
8 |
45,90566038 |
5,094339623 |
9,99% |
9 |
46,62735849 |
-1,627358491 |
3,62% |
10 |
48,07075472 |
0,929245283 |
1,90% |
По столбцу относительных погрешностей найдем среднее значение (функция СРЗНАЧ).
Схема проверки:
Сравним: 9,31% < 15%, следовательно, модель является точной.
Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости , если прогнозное значение фактора X составит 80% от его максимального значения.
Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно, . Рассчитаем по уравнению модели прогнозное значение показателя У:
.
Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.
Зададим доверительную вероятность и построим доверительный прогнозный интервал для среднего значения Y.
Для этого нужно рассчитать стандартную ошибку прогнозирования:
Предварительно подготовим:
- стандартную ошибку модели (Таблица 2);
- по столбцу исходных данных Х найдем среднее значение (функция СРЗНАЧ) и определим (функция КВАДРОТКЛ).
Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:
При размах доверительного интервала для среднего значения
Границами прогнозного интервала будут
Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.
7. Представить графически фактические и модальные значения Y точки прогноза.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели