Магнитоэлектрический бесконтактный генератор с импульсным регулятором напряжения

Макетный образец генераторной установки с магнитоэлектрическим генератором и управляемым выпрямителем уже изготовлен. Его испытания показали, что выходное напряжение генераторной установки в требуемых для работы в комплекте с аккумуляторной батареей пределах он поддерживает, причем в широком диапазоне изменения частоты вращения ротора и нагрузки /3/.

1.3.2 Бесконтактный стартер-генератор уп

равляемый микропроцессорной системой

Классические электрические системы автомобилей включают две электрические машины: стартер и генератор. Однако в последние годы функции стартера и генератора предлагается совместить - так, как это давно уже сделано в авиации. Причем наиболее перспективной для такой цели считается частотно-регулируемая асинхронная машина с инвертором напряжения. (Главным образом потому, что в ней нет скользящих контактов, которые, как известно, существенно снижают надежность системы.)

Для оптимального управления приводом необходимо изменять как частоту, так и амплитуду питающего напряжения.Практическая реализация системы, если ее выполнять на дискретных элементах, оказывается делом трудным, а в отдельных случаях - и невозможным.

В режиме стартера машина должна развивать момент, достаточный для пуска ДВС при напряжении аккумуляторной батареи, существенно меньшем номинального. Кроме того, должна быть предусмотрена возможность нескольких пусков от одного заряда батареи. После пуска система управления должна автоматически переводить стартер-генератор в режим генератора, обеспечивать постоянство выходного напряжения независимо от частоты вращения ротора и т. п.

Выход находят применяя бесконтактный стартер-генератор, управляемый микропроцессорной системой /12/,/13/.

Стартер-генератор (Рис 15.) представляет собой стандартную асинхронную машину (AМ) серии 4А с короткозамкнутым ротором, дополненную трехфазным автономным инвертором напряжения/12/.

Выбор серийной машины не случаен: за счет этого упрощается процесс изготовления стартер-генератора.

Автономный транзисторный инвертор напряжения собран, как видно из рисунка, по мостовой схеме. Со стороны переменного тока к нему подключена асинхронная машина, а со стороны постоянного тока - аккумуляторная батарея (АБ) и бортовая сеть автомобиля. Работой силовых транзисторов управляет микропроцессорная система.

Вал асинхронной машины через понижающий редуктор, передаточный коэффициент которого равен 15-16, подключен к ДВС. После пуска двигателя, т. е. когда частота вращения коленчатого вала становится больше частоты вращения вала асинхронной машины, обгонная муфта редуктора автоматически уменьшает коэффициент передачи до 2,0. Асинхронная машина переходит в генераторный режим с частотой вращения, в 2 раза большей частоты вращения коленчатого вала ДВС. На этом режиме инвертор преобразует электрическую мощность трехфазного переменного тока, снимаемую со статарной обмотки асинхронной машины, в мощностью постоянного тока, отдаваемую в бортовую сеть и на заряд аккумуляторной батареи, а также питает статорную обмотку реактивным намагничивающим током заданной частоты.

Когда асинхронная машина работает в генераторном режиме, инвертор также является источником только реактивной мощности, необходимой для создания основного магнитного потока. Причем частота вращения магнитного поля статора определяется частотой переключения транзисторов инвертора. Активная составляющая тока статора машины выпрямляется диодами обратного моста и отдается в бортовую сеть.

Следовательно, у асинхронного генератора клеммы статарной обмотки служат одновременно и клеммами возбуждения, и выходными.

В стартерном режиме инвертор преобразует электрическую мощность постоянного тока, потребляемую от аккумуляторной батареи, в активную мощность трехфазного переменного тока, необходимую для прокрутки ДВС. Закон этого преобразования задается микропроцессорной системой управления. В генераторном режиме заданная величина напряжения бортовой сети также поддерживается автоматически, путем изменения частоты переключения транзисторов инвертора по закону, реализуемому микропроцессорной системой управления.

Американская корпорация "Дженерал моторс" уже разработала асинхронный стартер-генератор и систему управления его инвертором. Данная система определяет положения ключа и замке зажигания; считывает сигналы датчиков частоты вращения вала стартер-генератора и напряжения на инверторе; измеряет и оценивает амплитуду и частоту напряжения, которое необходимо подавать на стартер-генератор по принятому закону; формирует управляющие воздействия на ключи инвертора. При этом частота напряжения определяется из ycловия постоянства абсолютного скольжения (за исключением момента начала "старта" двигателя и перехода асинхронной машины в генераторный режим, когда скольжение изменяется скачком от нуля до заданной величины). Правда, закон регулирования специалисты приняли довольно простой: отношение амплитуды питающего напряжения к его частоте должно оставаться постоянным. Эта простота системы созданная "Дженерал моторс" не позволяет использовать все возможности микропроцессоров. В частности, применяемый в ней для стабилизации выходного напряжения в режиме-генератора пропорциональный, регулятор может стать причиной неустойчивой работы самой системы регулирования. Если же функции приема, обработки информации и выдачи сигналов управления на ключи инвертора разделить между двумя процессорами, система заметно усложнится.

Перечисленных недостатков можно избежать, если применить микропроцессорную систему, структурная схема которой приведена на Рисунке 16 /12/.

Основные ее узлы и назначение следующие. Системный генератор (СГ) предназначен для формирования тактовых сигналов; микропроцессор (МП) вычисляет временные задержки и управляет ключами инвертора; системный контроллер (СК) формирует сигналы управления; оперативное запоминающее устройство (ОЗУ) хранит переменные и промежуточную информацию о состоянии асинхронной машины; постоянное запоминающее устройство (ПЗУ) содержит программу и таблицы функций управления; блок счетчиков (БС) и схема формирования вектора прерывания (СФВП) выполняют программный отсчет заданного времени, необходимого для формирования управляющих воздействий на ключи инвертора; блок-порт приема информации (ППИ) принимает сигналы датчиков скорости вращения вала стартер- генератора, питающего напряжения, положения ключа в замке зажигания; блок-порт выдачи информации (ПВИ) выдает управляющие воздействия на ключи инвертора.

Главная задача рассматриваемой системы - выдача таких управляющих воздействий на ключи инвертора, чтобы амплитуда и частота напряжения на обмотках стартер-генератора машин соответствовали требуемым с точки зрения оптимального закона управления. Решается она иначе, чем в системе "Дженерал моторс". Частота регулируется не за счет постоянства скольжения, а изменением длительности цикла переключения ключей инвертора, амплитуда - с помощью широтно-импульсного регулятора (ШИР). То есть система может изменять управляющие воздействия через некоторые промежутки времени, длительность которых задается программой. Поэтому задача регулирования частоты и амплитуды напряжения сформулирована именно с точки зрения длительности процессов.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы