Модернизация подвески автомобиля ЗАЗ1102 Таврия

При переднем приводе в точке контакта колес кроме вертикальной и боковой сил присутствуют еще тяговые силы Fа. Как показано на рис. 2.3.5 эту силу нужно рассматривать приложенной к оси поворота ниже центра колеса; сила Fа′′ вызывает в точке А, а также в направляющем маршруте G реакции FАХо и FGХо. За счет смещения пружины назад можно в некотором диапазоне скоростей (при вполне опред

еленной тяговой силе) почти полностью устранить силу FАХо, также вызывающую трение в направляющей и на поршне.

Рис. 2.3.4 Силы действующие напрямолинейно катящееся колесо

Рис. 2.3.4 На прямолинейно катящемся колесе силу сопротивления качению FR нужно рассматривать в виде силы F′R, приложенной в центре колеса; она имеет плечо Rа относительно от поворота. Величина этого плеча продольной силы зависит от плеча обкатки Ro; чем меньше последнее, тем выше на оси поворота приложена в виде F′R сила FR и тем равномернее нагружаются в продольном направлении точки А и G. Аналогичные статические соотношения справедливы и для тяговых сил, а также для тормозных в том случае, если тормоза расположены внутри, на главной передаче.

На рис. 2.3.5 приведены силы, действующие в статике в передней подвеске автомобиля, имеющей вынос колеса вперед – nτ и угол продольного наклона от поворота τ = 1˚ 20′. Пружина смещена на расчетное расстояние и относительно обеих вертикальных сил F′n и FGZ, чтобы получить пару горизонтальных сил FАХ1 и FGХ1. Вторая из этих сил складывается с уже имеющейся на направляющем шарнире силой FGХо; сила же FАХ1 при определенной скорости компенсирует действие противоположно направленной силы FАХо. При этой скорости в точке А практически отсутствуют продольные силы, вызывающие трение, а вместе с этим и силы на поршне К и в направляющей С.

За счет смещения пружины (сила FF рис. 2.3.5) на виде сбоку за ось колеса можно при определенной скорости устранить трение в направляющей С и на поршне К, вызванное продольной тяговой силой Fа на переднем колесе.

У автомобилей, имеющих тормоза наружного расположения в колесах, при торможении в верхней точке крепления А и в направляющем шарнире G возникают продольные силы FАХ2 и FGХ2, противодействующие составляющим FАХ1 и FGХ1, обусловленным смещением пружины. За счет этого при торможении малой интенсивности опасность заклинивания уменьшается (рис. 2.3.6). По причине отрицательного плеча обкатки Ro тормозную силу Fb следует рассматривать в виде F′b, приложенной на расстоянии а = Ro cos δo sin δo выше уровня дороги.

Рис. 2.3.5 Статические силы в подвеске с выносом колеса вперёд

Рис. 2.3.6 Схема стойки со смещением оси пружины за ось колеса

3 Силы в пятне контакта колеса с дорогой

Для расчета деталей шасси на прочность используют силы, действующие в пятне контакта колеса с дорогой при равномерном прямолинейном движении автомобиля. При определении долговечности выбирают дорожное покрытие среднего качества, а для расчета статической прочности используют движение по дороге с выбоинами, переезд препятствия или торможения с максимальным замедлением.

Подвеска автомобиля представляет собой колебательную систему, собственная частота колебаний которой определяется жесткостью шины С1, жесткостью подвески кузова С2 и массой оси М1. На неровной дороге амортизатор не может полностью погасить постоянно появляющиеся колебания нагрузки ± ∆N (рис. 3). Применив индекс V для переднего колеса, получим следующие верхние значения нормальной силы в пятне контакта колеса с дорогой:

NV0 = NV + ∆ NV ,

где NV равна половине допустимой нагрузки на ось, т.е. GV /2 . При проведении расчета цапфы или полуоси колеса из значения NV0 следует вычесть вес колеса и ступицы UR = 100 …150 Н. При рассмотрении других деталей подвески колеса используют половину веса неподрессоренных деталей UV, т.е.

N′V0 = NV + ∆N - (UV /2)

Многочисленные замеры показали, что изменения нагрузок длительного действия на колесо зависят как от нагрузки на колесо NV, так и от жесткости шины С1. Для определения С1 следует установить в шине рекомендуемое для данного автомобиля давление. На рис. 3 приведен коэффициент динамической нагрузки на колесо К1, который после умножения на NV дает верхнее значение нормальной нагрузки соответственно на передние колеса:

NV0 = К1 NV = NV + ∆ NV

Отсюда собственно амплитуда изменения нагрузки на передние колеса:

∆ NV = NV0 - NV.

3.1 Определение жесткости радиальных шин 155 ⁄ 70 R13

автомобиля ЗАЗ – 1102 «Таврия»

Шины автомобиля ЗАЗ – 1102 — радиальные, с универсальным рисунком протектора. Отношение высоты профиля к ширине Н/B = 0,7. Радиальное расположение нитей корда обеспечивает снижение числа слоёв корда по сравнению с диагональным расположением, высокую жесткость шин и повышает устойчивость и управляемость автомобиля, уменьшает теплообразование и сопротивление качению. Обозначение шин 155 ⁄ 70 R13, где 155 — ширина профиля в миллиметрах (или 6,1 дюймов), R — обозначает радиальную конструкцию, 13 — посадочный диаметр шины в дюймах (330 мм), 70 — отношение высоты профиля к ширине в процентах. Внутреннее давление воздуха в шинах передних колес 0,2…0,22 МПа (2,0…2,2 кгс/см²).

О жесткости шины судят по ее упругой характеристике, которая представляет собой зависимость между вертикальной нагрузкой и радиальной деформацией, измеряемой обычно при статическом нагружении. Жесткость шины С1 равна тангенсу угла наклона к средней линии, проведенной в точке, соответствующей статической нагрузке.

Для определения статической жесткости шины воспользуемся следующей формулой [ 1, стр. 263 ]:

,

где kB – поправочный коэффициент, учитывающий конструкцию шины;

F – нагрузка на шину, H;

D – наружный диаметр шины без нагрузки, мм;

rст – статический радиус шины с нагрузкой.

· Определяем осадку шины или статический прогиб:

tш = GК / (рш π √DмВ),

где GК – нагрузка на колесо, кг;

рш – внутреннее давление воздуха, кг/см² (Мпа);

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы