Дидактические принципы начального обучения математике

Общие положения

Дидактические принципы – исходные положения теории обучения, выражающие основные закономерности процесса обучения. Они определяются целями обучения и воспитания, потребностями общественного развития, особенностями учебной деятельности учащихся различных возрастов.

Дидактические принципы (принципы обучения) взаимно связаны и образуют систему. В педагогической литературе в

стречаются различные варианты системы дидактических принципов, различающейся укрупнением или объединением отдельных принципов или, наоборот, их детализацией, разделением одного принципа на несколько.

Рассмотрим систему, в основе которой – семь принципов: воспитывающее обучение, научность, сознательность усвоения, активность учащихся, наглядность обучения, прочность знаний, индивидуальный подход. Эти принципы детально изучаются в курсе педагогики, поэтому ограничимся лишь кратким рассмотрением сущности каждого из принципов, обращая главное внимание на особенности реализации их в начальном обучении математике.

Принцип воспитывающего обучения

Всякое обучение должно быть воспитывающим, т. е. наряду с определенными обучающими функциями должны осуществляться и воспитательные функции. Отсюда, однако, не следует, что все воспитание сводится к обучению. Наоборот, по-видимому, правильнее будет считать, что обучение является составной частью системы воспитания.

Воспитание в процессе обучения вообще, и математике в частности, имеет своей основной целью формирование у школьника мировоззрения и морали. Как решается эта задача при начальном обучении математике? На этом этапе обучения необходимо прежде всего показать, что всем изучаемым понятиям и фактам соответствуют реальные объекты, свойства и отношения между ними. Именно в начальном обучении иллюстрируется на многочисленных примерах известное утверждение Ф. Энгельса о том, что натуральные числа и геометрические фигуры взяты из реального мира, а не возникли из чистого мышления. Мы неоднократно обращаемся к реальным прообразам количественных отношений и пространственных форм. т. е. начинаем по существу формирование правильных представлений о предмете математики, о том, что математика, как и другие науки, изучает окружающий нас реальный мир.

Мораль – это совокупность норм и правил поведения людей во всех сферах общественной жизни. В математике существует много правил, которые нужно строго выполнять. Воспитание строгости соблюдения разного рода математических правил (алгоритмов) способствует и воспитанию правил поведения в обществе, соблюдению норм, регулирующих отношения между людьми.

На уроках математики учитель имеет большие возможности для воспитания у учащихся честности, трудолюбия, стремления к преодолению трудностей и т. д. Важнейшим средством воспитания этих качеств являются арифметические задачи, текст которых выполняет воспитательную функцию. Воспитывающий характер обучения в значительной мере зависит также от методов преподавания.

Научность в обучении

В соответствии с этим принципом учебный материал должен излагаться в последовательности, сохраняющей связи между понятиями, темами, разделами в рамках отдельного предмета, а также межпредметные связи. Таким образом, принцип научности в обучении включает систематичность и последовательность (иногда в педагогической литературе этот принцип называют принципом научности, систематичности и последовательности в обучении).

Научность в обучении математике не означает, что в учебную программу включается система математических знаний в том виде, в котором она существует в науке математике. Применительно к начальному обучению математике принцип научности следует понимать как отражение в нем определенных математических идей, позволяющее осуществить их раннюю пропедевтику. Такими фундаментальными математическими идеями являются идеи числа, функциональной зависимости, геометрической фигуры, измерения величин, алгоритма.

В начальных классах формируется представление о натуральном ряде как об упорядоченном, дискретном множестве с первым и без последнего элемента. Такие используемые в практике обучения выражения, как "соседние числа", "сосед справа", "сосед слева", соответствуют отношениям, рассматриваемым в науке математике, "непосредственно следует за", "непосредственно предшествует".

Свойства натурального ряда – "для каждого числа имеется единственный сосед справа", "для каждого числа, кроме 1, имеется единственный сосед слева", "сосед справа получается прибавлением 1", "сосед слева получается вычитанием 1" - отражают идеи порядковой теории натурального ряда и значения функции прибавления 1 для формирования этого ряда.

В первом классе смысл операции сложения раскрывается через объединение множеств конкретных предметов. При этом неявно используется известное положение количественной теории натуральных чисел:

"Открываемая" младшими школьниками зависимость между результатами и компонентами арифметических операций служит пропедевтикой идеи функциональной зависимости.

В начальных классах важно сформировать представление о замкнутости множества натуральных чисел относительно отдельных операций: для любых двух натуральных чисел можно найти их сумму, их произведение, но не для любых двух натуральных чисел можно найти натуральное число, равное их разности или их частному.

Ознакомление учащихся с процедурой измерения отрезков служит подготовкой к усвоению ими в дальнейшем более общих вопросов теории измерения величин.

Сознательность усвоения

Сознательность усвоения понимается как такое овладение учащимися знаниями, которое включает глубокое понимание усвоенного и умение применять его в новых конкретных ситуациях.

Трудности, связанные с реализацией принципа сознательности, обусловлены отчасти тем, что механизм понимания недостаточно изучен. Однако можно все же утверждать, что если ученик понял, какой – то материал, то он должен уметь отвечать на такие вопросы, решать какие – то задачи (важно правильно подобрать соответствующие вопросы и задачи). Если же ученик не справляется с этими вопросами и задачами, значит, он не понял данный материал.

В процессе обучения учитель должен постоянно получать информацию о качестве усвоения учащимися изучаемого материала. Это особенно важно при начальном обучении математике, так как непонимание последующего материала. Чтобы выяснить, заучен материал или же понят , нужна педагогически целесообразная система вопросов и задач. Считают, что вопрос "педагогически целесообразно" поставлен, если он вызывает активную мыслительную деятельность учащегося и не допускает ответа заученными словами из учебника.

Сознательное усвоение знаний исключает догматическое преподавание, результатом которого являются "формальные знания". Формализм чаще всего встречается при обучении математики, в частности широким использованием в ней искусственного символического языка. Учащиеся иногда ориентируются на запоминание внешнего символического выражения содержательного математического факта. Формальные знания бесполезны, так как их невозможно применять на практике. Так, ученик может знать таблицы сложения и умножения чисел, но не понимать, в каких задачах применяются действия сложения и умножения чисел от конкретных, реальных интерпретаций этих записей в процессе их изучения.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы