Методика обучения студентов педагогических вузов теме: "Сложное отношение точек. Полный четырехвершинник"
Из свойств сложного отношения четырех точек, заключаем, что в случае гармонической четверки точек , , , их сложное отношение не меняется
только при перестановке пар точек, но и при перестановке точек одной пары:
Аналогичными свойствами обладает и гармоническая четверка прямых пучка (которая определяется условием: ).
Пусть , , , – четыре точки общего положения на проективной плоскости. Если через каждые две из них провести прямую, то получим шесть прямых (рис. 4).
Фигура, образованная точками , , , и полученными шестью прямыми, называется полным четырехвершинником (или полным четырехугольником). Данные точки – его вершины, указанные прямые –его стороны.
Рис. 4
Две стороны, не имеющие общей вершины, называются противоположными: и , и , и – пары противоположных сторон.
Точки , , пересечения противоположных сторон называются диагональными точками, а прямые , , – диагоналями полного четырехвершинника.
Пусть и – точки пересечения диагонали с противоположными сторонами и , проходящими через третью диагональную точку . Докажем, что
. (7)
Проектируя точки , , , на прямую из центра , получим:
. (8)
Проектируя точки , , , на прямую из центра , получим:
(9)
(2), (3) (10)
Но по второму свойству §1
, (11)
(4), (5)
Но при точки и совпадают, а следовательно, совпадают прямые и , и точки , , , оказываются на одной прямой, что противоречит условию. Поэтому
студент педагогический преподавание конспект
,
(6)
(7)
Заметим, что в полном четырехвершиннике все его вершины равноправны, как равноправны все его диагональные точки. Поэтому справедлива
Теорема 5. Полный четырехвершинник обладает следующими свойствами:
на каждой диагонали имеется гармоническая четверка точек, в которой одной парой служат диагональные точки, а другой парой – точки пересечения этой диагонали со сторонами, проходящими через третью диагональную точку;
на каждой стороне имеется гармоническая четверка точек, в которой одной парой служат вершины, а другая пара образована диагональной точкой и точкой пересечения этой стороны с диагональю, проходящей через две другие диагональные точки;
через каждую диагональную точку проходит гармоническая четверка прямых, в которой одной парой служат противоположные стороны, а другой диагонали.
Первый пункт этой теоремы дает способ построения четвертой гармонической точки к упорядоченной тройке точек , , . Через точку проводим произвольную прямую , а через точку – две произвольные прямые и . Обозначим:
Другие рефераты на тему «Педагогика»:
- Творческая активность на уроках литературного чтения
- Методика преодоления формирования ошибок чтения у младших школьников
- Теоретические основы проблемы развития познавательных процессов у детей-дошкольников
- Характер и стили взаимодействия в ученическом коллективе
- Формирование знаний о русских исследователях-путешественниках в школьном курсе географии
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения