Теория нумераций
Полагаем – факторизация по отношению . Из определения легко видеть, что отделимо. Через обозначим морфизм факторизации . Докажем теперь, что – «наибольший» отделимый фактор – объект , т.е. докажем, что для любого отделимого нумерованного множества и любого морфизма существует (и притом единственный) морфизм такой, что диаграмма
коммутативна.
Рассмотрим каноническое представление морфизма :
где – факторизация, а – мономорфизм. Так как (– подобъект , а отделимо, то и отделимо. Тогда из определения отношения легко следует, что , но тогда существует отображение такое, что . Так как и – факторизации, то и – морфизмы. Этот (очевидно, единственный) морфизм и удовлетворяет соотношению . Итак, доказано свойство: отображение взаимно однозначно для отделимого . Доопределим теперь функтор . Он уже определен на объектах. Пусть – морфизм. Рассмотрим диаграмму
Так как есть морфизм из в отделимое нумерованное множество , то по доказанному выше свойству существует и притом единственный морфизм , который делает диаграмму коммутативной. Полагаем . Из определения сразу видно, что – функтор, а – естественное преобразование в .
В другой терминологии предложение 9 означает, что функтор вложения имеет левый сопряженный, а именно – функтор ).
Список литературы
1. Ершов Ю.Л. «Теория нумераций», Издательство «Наука» Главная редакция физико-математической литературы, Москва, 1997 г., 416 с.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах