Теория нумераций

Инъективные объекты играют важную роль в построениях гомологической алгебры. В естественных алгебраических категориях инъективными объектами оказываются алгебры, важность которых была обнаружена до

введения самого понятия категории и инъективного объекта. Например, полные абелевы группы, алгебраически замкнутые поля, вещественно замкнутые поля являются в точности инъективными объектами в подходящих естественных категориях.

Предложение 7. В категории не существует нетривиальных инъективных объектов.

Нумерованное множество , где – одноэлементное множество, очевидно, является инъективным объектом. Нетривиальность означает, что нумерованное множество содержит, по крайней мере, два элемента. Предположим противное. Пусть – инъективный объект в и . Пусть таково, что не m – сводится к , , где и определены так:

Тождественное отображение будет морфизмом из в . Действительно, пусть , тогда функция

такова, что и .

Итак, – морфизм. Кроме того, – мономорфизм (а также и эпиморфизм). Определим отображение так: . Как и выше, легко показать, что – морфизм из в . Так как – инъективный объект, то существует морфизм такой, что , но так как , то . Следовательно, отображение является морфизмом в , т.е. существует функция такая, что

Для этой функции имеем: если , то и , следовательно, и ; если , то и и , . Следовательно,

Функция – сводит к , что противоречит выбору . Получаем противоречие.

Не намного лучше дело обстоит и с двойственным понятием проективного объекта. Объект категории называется проективным, если для любых двух объектов и и любого эпиморфизма и любого морфизма существует морфизм такой, что .

Предложение 8. Нумерованное множество является проективным в категории тогда и только тогда, когда конечно, – разрешимая нумерация .

Действительно, пусть , а – разрешимая нумерация ; ); тогда , – рекурсивные множества. Пусть и – произвольные нумерованные множества, – эпиморфизм, а – произвольный морфизм. Из того, что , и существования морфизма следует, что . Тогда и . Пусть ; пусть . Существование элементов следует из тог, что – отображение на . Пусть – отображение из в , определенное так: . Покажем, что – морфизм. Пусть таковы, что . Определим функцию так:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы