Теория нумераций
Таким образом, нумерация разрешима (позитивна, негативна) тогда и только тогда когда таковой является ее нумерационная эквивалентность.
Предложение 1
Нумерация бесконечного множества S является разрешимой тогда и только тогда когда она эквивалентна некоторой од
нозначной нумерации.
Предложение 2
Если – позитивное (негативное) отношение эквивалентности, то - нумерационная эквивалентность подходящей вычислимой нумерации
Предложение 3
Если - семейство попарно не пересекающихся непустых рекурсивно перечислимых множеств, а - вычислимая нумерация, то позитивна
Предложение 4
Если – семейство общерекурсивных функций, – вычислимая нумерация, то - негативная нумерация.
Отметим некоторые свойства позитивных и негативных нумераций относительно сводимости.
Предложение 5
Если S – бесконечное множество, – негативная нумерация S, то существует однозначная нумерация множества S такая что
Предложение 6
Пусть S – бесконечное множество, - позитивная нумерация множества S. Если существует однозначная нумерация множества S такая что , то – разрешимая нумерация.
Предложение 7
Пусть – позитивная нумерация S и , тогда
Следствие
Позитивные нумерации множества определяют минимальные элементы в L(S)
Минимальные нумерации
Настоящий параграф посвящен краткому обзору (без доказательств) результатов, связанных с изучением вопроса о существовании тех или иных вычислимых минимальных нумераций у различных классов рекурсивно перечислимых множеств.
Нумерация ν: N → некоторого множества называется однозначной, если νn ≠ νm для n ≠ m N.
Интерес к изучению вопроса о существовании однозначных вычислимых нумераций у семейства объясняется такими обстоятельствами:
1. Всякая однозначная нумерация ν минимальна, т.е. [ν] – минимальный элемент в L°(S).
2. Если семейство S имеет хотя бы одну вычислимую однозначную нумерацию, то для любого R семейство \ {R} вычислимо (даже однозначно вычислимо, т.е. допускает однозначную вычислимую нумерацию).
Замечание: Отмеченное в 2 свойство является нетривиальным.
Справедливо следующее утверждение о семействе П.
Предложение 1. Семейство П обладает счетным семейством попарно неэквивалентных однозначных нумераций.□
Наиболее общими результатами о существовании однозначных вычислимых нумераций являются следующие две теоремы.
Теорема 1. Пусть вычислимое семейство содержит сильно перечислимое семейство конечных множеств такое, что
а) любое множество из S есть объединение возрастающей последовательности множеств из ;
б) любое множество из содержится в некотором собственном подмножестве из .
Тогда существует однозначная вычислимая нумерация семейства .□
Введем следующие определения. Множество М предельно для семейства множеств , если для любого конечного подмножества M в существует М' такое, что М'. Семейство предельно для семейства , если любое множество из предельно для семейства .
Теорема 2. Пусть вычислимое семейство содержит вычислимое подсемейство такое, что
а) если два множества из имеют непустое пересечение, то одно из них содержится в другом;
б) частично упорядоченное множество < , > не имеет максимальных элементов;
в) семейство предельно для семейства .
Тогда существует однозначная вычислимая нумерация семейства .□
Минимальными нумерациями являются также и позитивные (однозначные нумерации, в частности, также позитивны). Сразу следует отметить, что довольно многие семейства не имеют однозначных нумераций, но имеют позитивные нумерации. Укажем простейший пример.
Пусть А – рекурсивно перечислимое нерекурсивное множество, полагаем
Нумерацию определяем так:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах