Интеграл Лебега-Стилтьеса
3.2 Применение в квантовой механике
Аппарат стилтьесовского интегрирования приспособлен для единообразного описания дискретных и непрерывных явлений. Это обстоятельство оказалось решающим и при введении его в математический арсенал квантовой механики.
Если в механике раньше пользовались в основном классическим математическим анализом - аппаратом, приспособленным для описания опре
деленного класса непрерывных явлений, а в тех случаях, когда нужно было описать дискретные явления, прибегали к теории рядов, конечных или бесконечных, то в квантовой механике такие приемы оказались недостаточными. Непрерывные и дискретные аспекты переплелись в ней настолько тесно, что идея их единообразного описания напрашивалась сама собой.
Идея стилтьесовского интегрирования могла оказаться полезной с самого начала. Но в момент зарождения квантовой механики и некоторое время спустя интегрирование по Стилтьесу было еще недостаточно разработано, а главное - слишком мало известно, чтобы лечь в основу квантовой механики. И Дирак повернул направление ее развития в ином направлении.
Дирак в качестве исходной позиции тож ставит проблему единообразного описания дискретных и непрерывных явлений. При этом за основное понятие он берет понятие непрерывности, а дискретное описывает в терминах последнего. Против такого подхода сразу восстал И. Нейман, предложив заменить обобщенные функции интегралами Стилтьеса. Большинство физиков не приняло концепции Неймана, тем не менее он продолжал отстаивать и развивать свою точку зрения, подробно изложив свои соображения в своей монографии. И хотя его концепция была принята не сразу, тем не менее в квантовой механике интеграл Стилтьеса нашел своё применение.
Интеграл Стилтьеса и линейные функционалы.
Понятие функционала явилось предметом многочисленных исследований, восходящих ещё к Эйлеру. Среди этих исследований важное место заняли изыскания по аналитическому изображению функционалов.
В явной форме понятие функционала сформулировал Вольтера в 1887году. Он же дал и первое аналитическое выражение для некоторого класса функционалов в виде выражения, аналогичного ряду Тейлора с привлечением понятия производной функционала. В теории функций наиболее распространенным способом изображения функций является выражение их рядами того или иного типа. По аналогии начались попытки представления функционалов в виде рядов по функционалам
,
где - некоторые константы, зависящие от природы разлагаемого в ряд функционала , а - определенная последовательность фиксированных функционалов. Первым таким разложением было разложение, предложенное Пинкерле и Амальди в 1901 г. Оно имело вид:
,
где с - некоторое фиксированное число промежутка , на котором задано рассматриваемое множество функций .
Кроме них предложили общие выражения линейных функционалов Фреше и Адамар, но все эти способы пригодны только для относительно узких классов непрерывных функций. Поэтому поиски новых аналитических выражений для функционалов продолжались.
Решающим в этом направлении был результат Рисса. В 1909 г. Он доказал, что всякий линейный функционал , определенный в пространстве непрерывных функций , заданных на , раастояние между которыми выражается интегралом Стилтьеса
где - функция с ограниченным изменением, определяемая через
Заключение
Интеграл, который мы рассмотрели в данной работе, был введен Стилтьесом. Новое понятие ему было нужно, как мы уже говорили в первой главе, в разрабатывавшейся им теории цепных дробей; он ввел его и применил в интересовавших его вопросах. Разработка же выпала на доли других математиков, таких, как Кёниг, А.А. Марков, А.М. Ляпунов, Г.Ф. Вороной, Рисс, Гильберт, Хеллингер, причем каждый из них пришел к понятию интеграла Стилтьеса, отправляясь от разных задач. В теории цепных дробей применяли его сам Стилтьес и А.А. Марков, в теории R-интеграла - Кёниг, в теории чисел - Г.Ф. Вороной, в небесной механике - А.М. Ляпунов, в теории интегральных уравнений - Гильберт, Хеллингер, в теории линейных функционалов - Рисс. В дальнейшем разработкой интеграла занимались также У.Г. Юнг и Радон. Юнг использовал интеграл Стилтьеса в теории тригонометрических рядов, Радон применял также в теории линейных функционалов, в теории интегральных уравнений.
Очень велико число работ, посвященных изучению различных свойств интеграла Стилтьеса. Это работы Хелли, Брэй, Гильдебрандт, Р. Юнг, Г.М. Шварц, Яджи и др.
Совершенно необозримо поле приложений различных типов интеграла Стилтьеса. Разумеется, та исходная проблема, из которой родилось само понятие интеграла Стилтьеса, - проблема моментов, - не перестала быть связанной с этим понятием. После работ Стилтьеса, Маркова, Юнга и других ученых, о которых сказано выше, поток применений интеграла Стилтьеса вырос в трудно обозримый комплекс. Многие разделы математики невозможно представить без использования интеграла Стилтьеса.
Идея стилтьесовского интегрирования использовалась и продолжает использоваться при изучении различных вопросов математики, физики, квантовой механики. Поэтому данная работа может быть использована в качестве пособия для студентов физико-математичсеких факультетов.
Список литературы
1. Александров П.С., Колмогоров А. Введение в теорию функций действительного переменного. Изд.3-е, переработ. М. - Л., Гостехтеориздат., 1938г.
2. Брудно А.Л. Теория функций действительного переменного. Избранные главы.М., "Наука", 1971
3. Гливенко В.И. Интеграл Стилтьеса. - М., 1936, 216с.
4. Гохман Э.Х. Интеграл Стилтьеса и его приложения. Государственное издательство физ. - мат. литературы, М., 1958
5. Дьяченко М.И., Ульянов П.Л. Мера и интеграл. - М.: Издательство "Факториал Пресс", 2002. - 160с.
6. Камке Э. Интеграл Лебега-Стилтьеса. Перевод с немецкого Г.П. Сафроновой. Под ред. И.П. Натансона. - М.: Государственное издательство физ. - мат. литературы, 1959г.
7. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа: Учебник для вузов. - 6-е изд., испр. - М.: Наука, Главная редакция физ. - мат. Литературы, 1989. - 624 с.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах