Интеграл Лебега-Стилтьеса
Если, как обычно, обозначить через колебание функции в промежутке , так что
для
то, применяя оценку (25) к каждому интегралу в отдельности, будем иметь
Если промежуток раздроблен на столь мелкие части, что все , где - произвольное наперед взятое число, то заключаем, что
(26)
Эти оценки будут нами использованы в следующем пункте.
2.11 Предельный переход под знаком интеграла Стилтьеса
Пусть функции непрерывны в промежутке и при равномерно стремятся к предельной функции
(очевидно, также непрерывной), а - функция с ограниченным изменением. Тогда
Доказательство: По заданному найдется такое , что при будет для всех
Тогда, в силу (25), для
что, ввиду произвольности , и доказывает теорему.
Пусть теперь функция непрерывна в промежутке , а функции - все с ограниченным изменением в этом промежутке. Если полные изменения этих функций в их совокупности ограничены:
и при стремятся к предельной функции
То
Доказательство:
Прежде всего, убедимся в том, что предельная функция сама также будет иметь ограниченное изменение. Разложив промежуток произвольным образом на части точками
будем иметь (при любом )
Переходя к пределу здесь при , получим
откуда и
Составим суммы Стилтьеса
Если предположить, что промежуток при этом разложен на столь мелкие части, что колебание функции в каждой из них будет уже меньше произвольного наперед взятого числа , то в силу оценки (26), при всех
(27)
С другой стороны, если разбиение, выбранное под указанным условием, фиксировать, то, очевидно, при , так что найдется такое , что для будет
. (28)
Тогда для тех же значений будем иметь, в силу (27) и (28),
откуда, ввиду произвольности , и следует требуемое заключение.
2.12. Примеры и дополнения
Предполагая функцию монотонно возрастающей в строгом смысле, можно доказать относительно числа , фигурирующего в формуле (24), более точное утверждение:
Действительно, обозначив через и наименьшее и наибольшее значения функции в промежутке и считая , легко найдем такую часть этого промежутка, в которой границами служат числа и , так что
Написав для промежутков и неравенства вида (23) интеграл складывая их с предыдущими, получим взамен (23) более точные неравенства:
Другие рефераты на тему «Математика»:
- Построение математической модели оптимального управления, обеспечивающего мягкую посадку при минимальном расходе топлива
- Локальные формации с метаабелевыми группами
- Старший и верхний центральный показатели линейной системы
- Канонический вид произвольных линейных преобразований
- Функционально-графический подход к решению задач с параметрами
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах