Интеграл Лебега-Стилтьеса
если в качестве выбранных из промежутков точек взять , а для промежутков и , соответственно, и . Если, как обычно, положить , то теперь длины всех частичных промежутков не превзойдут . При сумма в квадратных скобках стремится к , следовательно, существует предел и для , т.е. интеграл , и этот интеграл определяется формулой (9).
Как следствие нашего рассуждения, особо отметим тот любопытный факт, что если функция в промежутке интегрируема по функции , то и функция интегрируема по функции .
Это замечание позволяет добавить ряд новых случаев существования интеграла Стилтьеса к тем, которые были рассмотрены в п.3, переменив роли функций и .
2.6 Приведение интеграла Стилтьеса к интегралу Римана
Пусть функция непрерывна в промежутке , а монотонно возрастает в этом промежутке, и притом в строгом смысле. Тогда, как показал Лебег, интеграл Стилтьеса с помощью подстановки непосредственно приводится к интегралу Римана.
На рисунке изображен график функции . Для тех значений , при которых функция испытывает скачок (ибо мы вовсе не предполагаем обязательно непрерывной), мы дополняем график прямолинейным вертикальным отрезком, соединяющим точки и . Так создается непрерывная линия, которая каждому значению между и относит одно определенное значение между и . Эта функция , очевидно, будет непрерывной и монотонно возрастающей в широком смысле; её можно рассматривать как своего рода обратную для функции .
Именно, если ограничиться лишь теми значениями , которые функция действительно принимает при изменении от до , то является обратной для неё в обычном смысле, т.е. относит именно то значение , при котором . Но из промежутка значений
связанного со скачком функции , лишь одно значение имеет себе соответствующее значение ; другим значениям в упомянутом промежутке никакие значения , очевидно, не отвечают. Но мы условно относим и им то же значение ; геометрически это и выразилось в дополнении графика функции рядом вертикальных отрезков.
Докажем теперь, что
(10)
где последний интеграл берется в обычном смысле, его существование обеспечено, так как функция , а с нею и сложная функция , непрерывна.
С этой целью разложим промежуток на части с помощью точек деления
и составим стилтьесову сумму
.
Если положить , то будем иметь
Так как , то
.
Это выражение имеет вид римановой суммы для интеграла
Отсюда, однако, нельзя ещё непосредственно заключить, переходя к оператору, о равенстве (10), ибо даже при может оказаться, что к нулю не стремится, если, например, между безгранично сближающимися и будет заключено значение , где функция испытывает скачок. Поэтому мы будем рассуждать иначе.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах