Интеграл Лебега-Стилтьеса

так что число

Лежит строго между и ; а тогда найдем и строго

между и , для которого и т.д.

Используя формулу (11) п., формулу интегрирования по частям и теорему о среднем для интегралов Стилтьеса, очень легко заново установить вторую теорему о среднем для обыкновенных интегралов.

Итак, пусть интегрируема (в смысле Римана), а монотонно возрастает в промежутке . Введем функцию

;

она, как мы знаем, будет непрерывна.

Теперь последовательно имеем

что и требовалось доказать.

Если монотонно возрастает в строгом смысле, то на основании сделанного в 1) замечания можно точнее сказать относительно :

Доказать, что, если в точке одна из функций и непрерывна, в то время как другая в окрестности этой точки ограничена, то существование интегралов и влечет за собой существование и .

С этой целью заметим, что, если при составлении стилтьесовой суммы мы будем включать точку в состав точек деления, то сумма будет слагаться из двух аналогичных сумм для частичных промежутков и ; при она будет стремиться к сумме интегралов . Пусть теперь точка не входит в число точек деления. Присоединяя к ним точку , мы от перейдем к новой сумме , про которую мы уже знаем, что при она имеет указанный предел. Таким образом, достаточно показать, что разность будет вместе с стремиться к 0.

Пусть точка попадает в промежуток ; тогда сумма отличается от суммы лишь тем, что вместо слагаемого

в ней имеется два слагаемых:

где и выбираются произвольно под условиями и . Положив для упрощения , сведем последнее выражение к

так что

(29)

Когда , то один из множителей правой части бесконечно мал, в то время как второй ограничен; следовательно, что и требовалось доказать.

Если обе функции и оказываются разрывными в одной интеграл той же точке , то интеграл Стилтьеса

(30)

заведомо не существует.

Для доказательства будем различать два случая. Пусть сначала , и пределы и не равны. Тогда при построении суммы Стилтьеса мы точку не станем вводить в число точек деления; пусть, скажем, Выбрав один раз , а другой раз взяв в качестве составим две суммы и , разность которых сведется к выражению (29). Сближая точки деления, будем иметь

Кроме того, точку можно выбрать так, чтобы разность была по абсолютной величине большей некоторого постоянного положительного числа. Тогда разность не стремится к 0, так что интеграл существовать не может.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы