Математические методы экономики

и, следовательно, их производственная функция выглядела так:

Дальнейший анализ показал, что за исключением некоторых случаев (например, учета технического прогресса), имеет место соотношение . Так как величина показывает эластичность производства, равенство является признаком линейной однородности производственной функции (см. §4.3 и пример 4.1 ). Этот факт позволяет записывать функцию Кобба-Дугласа в виде , где .

В отличие от функции Кобба-Дугласа, функция (4.4.3) даже после логарифмирования остается нелинейной. Поэтому для оценки параметров функции CES применяется более сложный нелинейный метод наименьших квадратов. Изложение этого метода и реализацию его алгоритма на языке программирования Бейсик интересующийся читатель может найти в книге [ 14 ].

При спецификации производственной функции, т.е. при решении вопроса о ее принадлежности к тому или иному классу известных функций, может быть полезным знание тех или иных числовых характеристик этих классов функций (отношение средних и предельных показателей, предельная норма замещения, эластичность и др.). Например, при моделировании двухфакторного производства () на основе имеющейся статистики можно составить дискретный (разностный) аналог показателя эластичности по капиталу

Если эта величина приблизительно равна постоянному числу для всех t и , для которых разность достаточно мала, то искомая функция может принадлежать классу функций Кобба-Дугласа. Точно так же, дискретный аналог эластичности замещения может внести ясность относительно принадлежности искомой функции к классу функций CES.

Выделение существенных видов ресурсов (факторов производства) и выбор аналитической формы ПФ называется спецификацией ПФ.

Преобразование реальных и экспертных данных в модельную информацию, т.е. расчет численных значений параметров ПФ на базе статистических данных с помощью регрессионного и корреляционного анализа, называется параметризацией ПФ.

Проверка истинности (адекватности) ПФ называется ее верификацией.

Спецификация определяется, прежде всего, теоретическими соображениями, которые учитывают макро и микроэкономические особенности объекта исследования, параметризация также использует для сглаживания результатов ряда лет методы наименьших квадратов.

Моделирование производственных процессов. Факторы производства. Неоклассическая производственная функция, и её свойства. Предельные и средние продукты факторов производства. Эластичность выпуска по факторам производства. Изокванты. Предельные нормы и эластичность замещения факторов производства. Основные виды ПФ выпуска. Равновесие производителя.

Под производством понимается процесс взаимодействия экономических факторов, завершаемый выпуском какой-либо продукции. Правила, предписывающие определенный порядок взаимодействия экономических факторов, составляют способ производства или, иначе говоря, технологию производства. Производство - основная область деятельности фирмы (или предприятия). Фирма - это организация, производящая затраты экономических ресурсов для изготовления продукции и услуг, которые она продает потребителям, в том числе, другим фирмам. Производственными единицами являются не только заводы и фабрики, но и отдельные лица - фермеры, ремесленники и др.

Производство можно представить как систему "затраты-выпуск", в которой выпуском является то, что фактически произведено, а затратами - то, что потребляется с целью выпуска (капитал, труд, энергия, сырье). Поэтому формально можно сказать, что производство - это функция, которая каждому набору затрат и конкретной технологии ставит в соответствие определенный выпуск. Именно такое упрощенное понимание производства как "черного ящика" заложено в математической модели производства. Во "вход" этого черного ящика подаются затраты, а на "выходе" получаем выпуск (произведенную продукцию).

Подобное описание производства на первый взгляд кажется сильно абстрактным, так как в нем не отражены технологические процессы, происходящие внутри черного ящика. В математической модели технология производства учитывается обычно посредством задания соотношений между затратами и выпуском т.е. нормой затрат каждого из ресурсов, необходимых для получения одной единицы выпускаемой продукции. Такой подход объясняется тем, что математическая экономика изучает суть экономических процессов, а сугубо технические операции как таковые (а не их экономические следствия) остаются за рамками этой науки.

Задача фирмы, как производственной единицы, сложна и многогранна - начиная от организации производства и кончая благотворительной деятельностью. Естественно, математической моделью нельзя охватить весь спектр деятельности фирмы и отразить все преследуемые цели. Поэтому при формализации задачи рационального функционирования фирмы учитываются лишь основные конечные цели.

Конечной целью фирмы является получение наибольшей прибыли от реализации своей продукции. Напомним в этой связи, что прибыль понимается как разность двух величин: выручки от реализации продукции (дохода) и издержек производства. Издержки производства равны общим выплатам за все виды затрат, иначе говоря, издержки - это денежный эквивалент материальных затрат. В общем случае издержки состоят из двух слагаемых: постоянных издержек и переменных издержек. Постоянные издержки (расходы на закупку и ремонт оборудования, содержание фирмы, страховку и пр.) фирма несет независимо от объема выпуска. Переменные издержки (расходы на заработную плату, сырье и пр.) касаются использования уже имеющихся в распоряжении фирмы ресурсов, производственных мощностей и меняются вместе с объемом выпуска.

Согласно с поставленной целью, задача фирмы сводится к поиску такого способа производства (сочетания затрат и выпуска), который обеспечивает ей наибольшую прибыль с учетом и в рамках имеющихся у нее ограниченных ресурсов. Данная трактовка цели фирмы и наилучшего способа производства не является единственно возможной. Речь идет о некоторой гипотезе относительно предпочтений производителя, а не о логической необходимости. В действительности же мотивы принимаемых руководителями фирм решений могут быть продиктованы другими соображениями, например, гуманного или социально-политического характера. Поэтому в отличие от математической теории потребления, где существовала единственная, логически оправданная оптимизационная модель потребителя, здесь нецелесообразно говорить об "оптимизационной модели фирмы" как таковой. Задачи фирмы могут существенно отличаться как преследуемой целью, так и временным периодом ее решения.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы