Математические методы экономики

Меры риска

Наиболее распространена точка зрения, согласно которой мерой риска коммерческого (финансового) решения или операции следует считать среднеквадратичное отклонение (положительный квадрат­ный корень из дисперсии) значения показателя эффективности этого решения или операции. Действительно, поскольку риск обусловлен недетерминированностью исхода решения (операции), то, чем мен

ьше разброс (дисперсия) результата решения, тем более он пред­сказуем, т.е. меньше риск. Если вариация (дисперсия) результата равна нулю, риск полностью отсутствует. Например, в условиях ста­бильной экономики операции с государственными ценными бума­гами считаются безрисковыми.

Чаще всего показателем эффективности финансового решения (операции) служит прибыль.

Рассмотрим в качестве иллюстрации выбор некоторым лицом одного из двух вариантов инвестиций в условиях риска. Пусть име­ются два проекта Л и В, в которые указанное лицо может вложить средства. Проект А в определенный момент в будущем обеспечивает случайную величину прибыли. Предположим, что ее среднее ожи­даемое значение, математическое ожидание, равно тА с дисперсией SA . Для проекта В эти числовые характеристики прибыли как случайной величины предполагаются равными соответственно тв и SB~. Среднеквадратичные отклонения равны соответственно SA и SB.

Возможны следующие случаи:

a) тА = тв, SA < SB, следует выбрать проект Л;

b) тА > тв, SA < sb, следует выбрать проект А;

c) тА > тв, SA = sb, следует выбрать проект Л;

d) тА > тв, SA >SB;

e) тА < тв, SA <SB.

В последних двух случаях решение о выборе проекта А или В зависит от отношения к риску ЛПР. В частности, в случае d) проект А обеспечивает более высокую среднюю прибыль, однако он и бо­лее рискован. Выбор при этом определяется тем, какой дополни­тельной величиной средней прибыли компенсируется для ЛПР за­данное увеличение риска. В случае е) для проекта А риск меньший, но и ожидаемая прибыль меньше.

Магистральные модели экономики. Магистральная модель накопления основных производственных фондов в конце планового периода. Модель фон Неймана расширяющейся экономики.

Классическая (исходная) модель Неймана строится при следующих предпосылках:

  1. экономика, характеризуемая линейной технологией, состоит из отраслей, каждая из которых обладает конечным числом производственных процессов, т.е. выпускается несколько видов товаров, причем допускается совместная деятельность отраслей;
  2. производственные процессы разворачиваются во времени, причем осуществление затрат и выпуск готовой продукции разделены временным лагом;
  3. для производства в данный период можно тратить только те продукты, которые были произведены в предыдущем периоде времени, первичные факторы не участвуют;
  4. спрос населения на товары и, соответственно, конечное потребление в явном виде не выделяются;
  5. цены товаров изменяются во времени.

Перейдем к описанию модели Неймана. На дискретном временном интервале с точками рассматривается производство, в котором n видов затрат с помощью m технологических процессов превращаются в n видов продукции. Мы не будем указывать число отраслей, так как в дальнейшем не понадобится подчеркивать принадлежность товаров или технологий к конкретным отраслям. В модели Леонтьева технологические коэффициенты были отнесены к единице продукта. В модели Неймана, принимая в качестве производственных единиц не отрасли, а технологические процессы, удобно отнести эти коэффициенты к интенсивности производственных процессов.

Интенсивностью производственного процесса j называется объем продуктов, выпускаемых этим процессом за единицу времени. Уровень интенсивности j-го процесса в момент времени t обозначим через (). Заметим, что является вектором, число компонент которого соответствует числу выпускаемых j-ым процессом видов товаров и .

Предположим, что функционирование j-го процесса () с единичной интенсивностью требует затрат продуктов в количестве

и дает выпуск товаров в количестве

Введем обозначения . Пара характеризует технологический потенциал, заложенный в j-ом процессе (его функционирование с единичной интенсивностью). Поэтому пару можно назвать базисом j-го производственного процесса, имея в виду, что для любой интенсивности соответствующую пару затраты-выпуск можно выразить как . Поэтому последовательность пар

представляющих собой затраты и выпуски всех производственных процессов в условиях их функционирования с единичными интенсивностями, будем называть базисными процессами.

Все m базисных процессов описываются двумя матрицами

где A- матрица затрат, B- матрица выпуска. Вектор называется вектором интенсивностей. Соответствующие этому вектору затраты и выпуски по всем m процессам можно получить как линейную комбинацию базисных процессов (6.4.1) с коэффициентами :

Говорят, что в производственном процессе базисные процессы (6.4.1) участвуют с интенсивностями . Как видно из (6.4.2) , неймановская технология, описываемая двумя матрицами A и B единичных уровней затрат и выпуска, является линейной (см. предпосылку 1) в начале параграфа). Рассматривая все допустимые "смеси" базисных процессов, получаем расширенное множество производственных процессов

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы