Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике

В 5–6 классах учащиеся овладевают навыками вычисления с натуральными и целыми числами, с обыкновенными и десятичными дробями. При этом алгоритмы вычислений с двух-трехзначными числами должны быть отработаны с учащимися до автоматизма; учащиеся должны свободно производить в уме арифметические действия в пределах сложности примеров и умножение двузначного числа на однозначное, на сложение двух др

обей в простейших случаях. Все вычисления должны производиться достаточно бегло; их включение в выполнение более сложных вычислений не должно затруднять учащихся [6].

В 7–9 классах обобщаются и систематизируются сведения о действительных числах, развиваются и закрепляются вычислительные навыки. При этом не следует ослаблять внимание к поддержанию достаточно высокого уровня техники вычислений и повышению уровня вычислительной культуры учащихся (рационализация вычислений, их организация, применение приближенных вычислений). Эта задача должна решаться путем последовательного увеличения доли вычислений при изучении основного материала курса. Вычислительные навыки учащихся должны получить дальнейшее развитие при изучении вопросов, связанных с приближенными вычислениями, где, помимо дальнейшей отработки вычислительных алгоритмов, должны быть сформированы навыки прикидки и оценки результатов вычислений. По мере усвоения учащимися вычислительных алгоритмов и расширения объема сведений о числовых функциях существенно увеличивается объем и сложность вычислительных работ, что требует привлечения таблиц и математических инструментов (калькулятора) [6].

Вычислительным навыкам, как и любым другим, необходимо учить. Качество вычислительных умений и навыков определяется знанием правил и алгоритмов вычислений. Поэтому степень овладения вычислительными умениями зависит от четкости сформулированного алгоритма и от понимания принципа его использования. Очень важно владение некоторыми вычислительными умениями доводить до навыка. Что нужно сделать для этого учителю?

1. Ознакомить учащихся с принципом работы того или иного нового для них вычислительного алгоритма.

2. Провести работу по отработке отдельных операций, входящих в новый алгоритм. Для формирования навыка выполнения данного алгоритма недостаточно отдельных упражнений, необходима тщательно продуманная их система, в которой должна соблюдаться последовательность упражнений с постепенным их усложнением. Однако следует предостеречь от излишнего числа однообразных упражнений в системе. Упражнения по формированию навыков должны быть достаточно разнообразными как по содержанию, так и по форме, лишь в этом случае достигается прочность навыков.

3. Провести работу по закреплению алгоритма – использовать его применение во всех стандартных и нестандартных ситуациях. Это немаловажно, так как уровень вычислительных навыков определяется систематичностью закрепления ранее усвоенных приемов вычислений и приобретением новых в связи с изучаемым материалом. Кроме того, формируемые навыки в выполнении вычислений и тождественных преобразований должны входить в ранее сформированную систему знаний, умений и навыков учащихся как составная часть. Поэтому после нескольких упражнений в формировании нового вычислительного умения или навыка полезно для достижения этой цели выполнять упражнения, связывающие изучаемое с ранее приобретенными умениями и навыками.

4. И, конечно же, необходимо провести проверку по усвоению алгоритма учащимися. Этому могут помочь проведение самостоятельных работ и наблюдения учителя за работой учащихся в классе. Анализ письменных и устных работ учащихся дает возможность установить, как усвоен данный материал, какие общие и наиболее характерные ошибки допущены при проведении вычислений, кто из учащихся и что именно не усвоил и как ликвидировать выявленные пробелы.

Вычислительные навыки и умения можно считать сформированными только в том случае, если учащиеся умеют с достаточной беглостью выполнять математические действия с натуральными числами, десятичными и обыкновенными дробями, рациональными числами, производить тождественные преобразования различных числовых выражений и приближенные вычисления, рационально организовывать ход вычислений, а также убеждать в правильности полученных результатов.

На каких же этапах урока и внеклассных мероприятий можно обучать вычислительным навыкам? На уроках можно отводить 5–10 минут, в течение которых учащиеся знакомятся с каким-либо алгоритмом и закрепляют его решением примеров. Пятиминутки «устного счета» так же могут быть использованы для формирования и отработки вычислительного навыка. На этапе актуализации знаний можно провести проверку знаний того или иного вычислительного алгоритма. А на внеклассных мероприятиях можно ввести специальное отделение, в котором учащиеся, хорошо владеющие вычислительными алгоритмами, с успехом выступают перед одноклассниками. Также можно использовать различные игровые приемы (конкурсы, состязания) для изучения, закрепления, проверки знания вычислительных алгоритмов.

Таким образом, вычислительные навыки нужны и при изучении программного материала в школе, и в повседневной жизни. Кроме того, они окажутся полезными для прикидки ожидаемого результата не только в учебной деятельности, но и в жизни. Именно поэтому учить учащихся быстро, правильно и рационально считать в школе необходимо и не только на уроках, но и на внеклассных занятиях по математике.

1.3 Устные вычисления как основа повышения вычислительной культуры школьников

В методике математики различают устные и письменные приемы вычисления. К устным относят все приемы для случаев вычислений в пределах 100, а также сводящихся к ним приемы вычислений для случаев за пределами 100 (например, прием для случая 900·7 будет устным, так как он сводится к приему для случая 9·7). К письменным относят приемы для всех других случаев вычислений над числами большими 100.

Устная работа на уроках математики в младших классах, имеет большое значение – это и беседы учителя с классом или отдельными учениками, и рассуждения учащихся при выполнении тех или иных заданий и т.п. Среди этих видов устной работы можно выделить так называемые устные упражнения. Ранее они сводились в основном к вычислениям, поэтому за ними закрепилось название «устный счет». И хотя в современных учебниках содержание устных упражнений весьма разнообразно и велико, за счет введения алгебраического и геометрического материала, а также за счет большого внимания к свойствам действий над числами и величинами и других вопросов, название «устный счет» по отношению к устной форме проведения упражнений сохранилось до сих пор. Это, по мнению В.С. Кравченко, приводит к некоторым неудобствам, так как термин «устный счёт» используется, кроме того, и в своём естественном смысле, то есть вычисления, производимые устно, в уме, без записей. В связи с этим вместо термина «устный счёт», удобнее пользоваться термином «устные упражнения».

Как пишет педагог О.П. Зайцева в своей статье «Роль устного счета в формировании вычислительных навыков и развития личности ребенка» важность и необходимость устных упражнений доказывать не приходиться. Значение их велико в формировании вычислительных навыков и в совершенствовании знаний по нумерации, и в развитии личностных качеств ребёнка. Создание определённой системы повторения ранее изученного материала дает учащимся возможность усвоения знаний на уровне автоматического навыка. Устные вычисления не могут быть случайным этапом урока, а должны находиться в методической связи с основной темой и носить проблемный характер.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы