Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике

2) 3,64 + (4,36 + 9,78) = 3,64 + 4,36 + 9,78 = (3,64 + 4,36) + 9,78 = 8 + 9,78.

4. Прибавление числа к сумме.

1) (337 + 488) + 663 =663 + (337 + 488) (переместительный закон) = 663+ + 337 + 488 (правило прибавления суммы) = (663 + 337) + 488 (сочетательный закон) = 1000 + 488 = 1488.

Примененное здесь свойство сложения формулируется так: чтобы к сумме чисел прибавить число, достаточ

но прибавить его к одному из слагаемых.

2) (4,55 + 6,89) + 5,45 = (4,55 + 5.45) + 6,89 = 10 + 6,89 = 16,89.

5. Прибавление к сумме другой суммы.

1) (327 + 684 + 168) +(473 + 316 + 132) = (327 +684 + 168) + 473 + 316 + + 132 = 327 + 684 + 168 + 473 + 316 + 132 (правило прибавления суммы к числу) = 327 + 473 + 684 +316 +168 + 132 (переместительный закон) = (327 + 473) + + (684 + 316) + (168 + 132) (сочетательный закон) = 800 + 1000 + 300 = 2100.

2) (12,24 + 27,58) + (37,76 + 2,42) = (12,24 + 37,76) + (27,58 + 2,42) = 50 + 30 = 80.

2.2.2 Сложение и вычитание

1. Перестановка членов ряда сложений и вычитаний (перестановка членов алгебраической суммы).

1‑й случай.

1) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения) (сочетательность сложения) (переместительность сложения) (следствие сочетательного закона) (если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число останется без изменения) = 5000 + 579 (порядок действий) = 5579. Итак, .

Результат ряда сложений и вычитаний не меняется от перемены порядка членов ряда (при этом каждый член ряда остается в его прежней роли слагаемого или вычитаемого).

При введении отрицательных чисел, обоснование решения подобного примера весьма просто: для членов алгебраической суммы справедливы переместительный и сочетательный законы сложения.

2‑й случай.

2) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число не изменится) (первый случай переместительности членов ряда сложений и вычитаний) (если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число не изменится) . Итак, .

2. Прибавление разности к числу (первый случай сочетательности членов ряда сложений и вычитаний).

(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) (сочетательный закон) (производим сложение и вычитание). Итак, .

При решении подобных примеров применяется следующее правило: чтобы к числу прибавить разность, достаточно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.

В этом случае правило может быть сформулировано так: чтобы к числу прибавить разность, достаточно из данного числа вычесть вычитаемое и к полученному числу прибавить уменьшаемое.

3. Вычитание из числа суммы (второй случай сочетательности членов ряда сложений и вычитаний).

(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число не изменится) (на том же основании) = (переместительный и сочетательный законы) (если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) . Итак, .

Чтобы из числа вычесть сумму, достаточно вычесть из него одно за другим каждое слагаемое.

4. Вычитание из числа разности (третий случай сочетательности членов ряда сложений и вычитаний).

1) (если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения) (на том же основании) (переместительность членов ряда сложений и вычитаний) (сочетательность членов ряда сложений и вычитаний) (если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) = . Итак, .

Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.

2) (вычитание из числа разности) (переместительность членов ряда сложений и вычитаний) (сочетательность суммы) (выполняем сложение и вычитание полученных чисел).

Таким образом, чтобы из числа вычесть разность, достаточно прибавить к нему вычитаемое и затем отнять уменьшаемое. Так как в математике нельзя из меньшего числа вычитать большее, то в случае, когда уменьшаемое больше числа, из которого вычитается разность, применить можно лишь второе из этих правил. Во всех остальных случаях выбираем то правило вычитания из числа разности, которое дает более быстрые и простые вычисления.

5. Вычитание из суммы числа.

(порядок действий) (переместительность ряда сложений и вычитаний) (сочетательность ряда сложений и вычитаний) = 100 + 476 = 576. Итак, .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы