Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике
2) 3,64 + (4,36 + 9,78) = 3,64 + 4,36 + 9,78 = (3,64 + 4,36) + 9,78 = 8 + 9,78.
4. Прибавление числа к сумме.
1) (337 + 488) + 663 =663 + (337 + 488) (переместительный закон) = 663+ + 337 + 488 (правило прибавления суммы) = (663 + 337) + 488 (сочетательный закон) = 1000 + 488 = 1488.
Примененное здесь свойство сложения формулируется так: чтобы к сумме чисел прибавить число, достаточ
но прибавить его к одному из слагаемых.
2) (4,55 + 6,89) + 5,45 = (4,55 + 5.45) + 6,89 = 10 + 6,89 = 16,89.
5. Прибавление к сумме другой суммы.
1) (327 + 684 + 168) +(473 + 316 + 132) = (327 +684 + 168) + 473 + 316 + + 132 = 327 + 684 + 168 + 473 + 316 + 132 (правило прибавления суммы к числу) = 327 + 473 + 684 +316 +168 + 132 (переместительный закон) = (327 + 473) + + (684 + 316) + (168 + 132) (сочетательный закон) = 800 + 1000 + 300 = 2100.
2) (12,24 + 27,58) + (37,76 + 2,42) = (12,24 + 37,76) + (27,58 + 2,42) = 50 + 30 = 80.
2.2.2 Сложение и вычитание
1. Перестановка членов ряда сложений и вычитаний (перестановка членов алгебраической суммы).
1‑й случай.
1) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения)
(сочетательность сложения)
(переместительность сложения)
(следствие сочетательного закона)
(если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число останется без изменения) = 5000 + 579 (порядок действий) = 5579. Итак,
.
Результат ряда сложений и вычитаний не меняется от перемены порядка членов ряда (при этом каждый член ряда остается в его прежней роли слагаемого или вычитаемого).
При введении отрицательных чисел, обоснование решения подобного примера весьма просто: для членов алгебраической суммы справедливы переместительный и сочетательный законы сложения.
2‑й случай.
2) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(первый случай переместительности членов ряда сложений и вычитаний)
(если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.
2. Прибавление разности к числу (первый случай сочетательности членов ряда сложений и вычитаний).
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
(сочетательный закон)
(производим сложение и вычитание). Итак,
.
При решении подобных примеров применяется следующее правило: чтобы к числу прибавить разность, достаточно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
В этом случае правило может быть сформулировано так: чтобы к числу прибавить разность, достаточно из данного числа вычесть вычитаемое и к полученному числу прибавить уменьшаемое.
3. Вычитание из числа суммы (второй случай сочетательности членов ряда сложений и вычитаний).
(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(на том же основании) =
(переместительный и сочетательный законы)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.
Чтобы из числа вычесть сумму, достаточно вычесть из него одно за другим каждое слагаемое.
4. Вычитание из числа разности (третий случай сочетательности членов ряда сложений и вычитаний).
1) (если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения)
(на том же основании)
(переместительность членов ряда сложений и вычитаний)
(сочетательность членов ряда сложений и вычитаний)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) =
. Итак,
.
Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.
2) (вычитание из числа разности)
(переместительность членов ряда сложений и вычитаний)
(сочетательность суммы)
(выполняем сложение и вычитание полученных чисел).
Таким образом, чтобы из числа вычесть разность, достаточно прибавить к нему вычитаемое и затем отнять уменьшаемое. Так как в математике нельзя из меньшего числа вычитать большее, то в случае, когда уменьшаемое больше числа, из которого вычитается разность, применить можно лишь второе из этих правил. Во всех остальных случаях выбираем то правило вычитания из числа разности, которое дает более быстрые и простые вычисления.
5. Вычитание из суммы числа.
(порядок действий)
(переместительность ряда сложений и вычитаний)
(сочетательность ряда сложений и вычитаний) = 100 + 476 = 576. Итак,
.
Другие рефераты на тему «Педагогика»:
- Творческое развитие детей младшего школьного возраста средствами социально-культурной деятельности
- Методологические основы развития творческих способностей детей среднего дошкольного возраста
- Творчество детей старшего дошкольного возраста в процессе театрализованной деятельности
- Основы учебной и исследовательской деятельности
- Процесс обучения математики младших школьников
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения