Разностные схемы для уравнения переноса на неравномерных сетках

. (3.3′)

Из уравнения (3.1′) следует

2) p<0

Разностная схема(левая) имеет вид:

; (3.1″)

; (3.2″)

(3.3″)

Из уравнения (3.1″) следует

Таблица 11. Численное решение уравнения переноса с постоянными коэффициентами схема бегущего счета “явная ” схема (правая разностная схема)

-------------kogda p>0-------------------------------------------50sloy

N priblijennoe tochnoe pogreshnosti

0

1.37301170

1.35914091

0.01387078

1

1.41878826

1.40520915

0.01357911

2

1.46606506

1.45283887

0.01322618

3

1.51488985

1.50208301

0.01280684

4

1.56531173

1.55299629

0.01231544

5

1.61738112

1.60563527

0.01174585

6

1.67114985

1.66005846

0.01109139

7

1.72667123

1.71632633

0.01034490

8

1.78400003

1.77450141

0.00949863

9

1.84319260

1.83464833

0.00854427

10

1.90430684

1.89683395

0.00747290

11

1.96740228

1.96112735

0.00627493

12

2.03254007

2.02759998

0.00494008

13

2.09978305

2.09632572

0.00345734

14

2.16919578

2.16738091

0.00181487

15

2.24084454

2.24084454

0.00000000

Таблица 12. Численное решение уравнения переноса с постоянными коэффициентами схема бегущего счета “явная ” схема (левая разностная схема)

-------------kogda p<0-------------50sloy

N priblijennoe tochnoe pogreshnosti

0

0.03678794

0.03678794

0.00000000

1

0.03444494

0.03558189

0.00113696

2

0.03220334

0.03441538

0.00221204

3

0.03005929

0.03328711

0.00322782

4

0.02800907

0.03219583

0.00418676

5

0.02604910

0.03114032

0.00509122

6

0.02417592

0.03011942

0.00594350

7

0.02238620

0.02913199

0.00674579

8

0.02067672

0.02817693

0.00750021

9

0.01904439

0.02725318

0.00820879

10

0.01748622

0.02635971

0.00887349

11

0.01599934

0.02549554

0.00949620

12

0.01458096

0.02465970

0.01007874

13

0.01322842

0.02385126

0.01062284

14

0.01193914

0.02306932

0.01113018

15

0.01071063

0.02231302

0.01160239

Текст программы смотри в приложении 4

3.3 Неявные схемы

Рассмотрим две различные разностные схемы:

1. Центрально-разностная схема.

2. Трехточечная схема с весом.

Все эти схемы сводятся к стандартному виду (3.4) и решаются методом прогонки

(3.4)

Коэффициенты Ai, Bi, Ci должны удовлетворять условиям:

(3.5)

Коэффициенты B0 , C0 , F0, AN ,CN ,FN находятся из граничных условий. В данной задаче в зависимости от знака функции p(x,t) ставятся граничные условия и тем самым находятся наши коэффициенты.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы