Произведение двух групп

Предположим, что - нечетное и . Так как - стабилизатор точки и разрешима индекса , то , либо . Группа не допускает требуемой факторизации по лемме 9. Поэтому либо , либо . Теорема 1 доказана.

Доказательство теоремы 2 . Пусть - 2-нильпотентная группа и - ее силовская 2-подгруппа, - циклическая. Очевидно, мы можем считать, что . Пусть - максимальная в подгруппа, содержащая . Так как , то . Предположим, что . Тогда и группа непроста. Если порядок нечетен, то по индукции разрешима и , противоречие. Таким образом, , кроме того, максимальна в . Теперь - дважды транзитивна на множестве смежных классов по . Если порядок четен, то группа непроста по лемме 4.1. Пусть порядок нечетен. Тогда - силовская в подгруппа. По теореме Виландта-Кегеля , а по лемме 3.3 и 2-разложимая подгруппа. По теореме 1V.2.6 подгруппа неабелева. Так как из теоремы 1 в случае, когда порядок нечетен следует, что силовская 2-подгруппа в абелева, то имеем противоречие. Теорема доказана.

Симметрическая группа пяти символов факторизуется 2-нильпотентной подгруппой порядка 20 и циклической подгруппой порядка 6. Поэтому условие нечетности порядка циклического фактора существенно.

Заключение

В данной курсовой работе были приведены некоторые результаты, полученные Монаховым В. С. (Гомельская лаборатория института математики), проливающие свет на такие важные вопросы в теории конечных групп, как разрешимость и сверхразрешимость конечных групп, являющихся произведением двух групп с различными свойствами, а именно содержащих циклическую подгруппу индекса , содержащих циклические подгруппы индекса 2, разрешимые и циклические группы.

Эти полученные данные изложены в теоремах 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2 и 3.3. Так же представляют интерес данные изложенные в леммах, которые были использованы при доказательстве выше упомянутых теорем. В особенности следует выделить лемму 1.2, которая обобщает лемму А. В. Романоского и теорему 1.3, являющеюся обобщением теоремы Б. Хупперта.

Список использванных источников

1. Монахов В.С. О произведении двух групп, одна из которых содержит циклическую подгруппу индекса .// Математические заметки.-1974.-Т.16, №2-с. 285-295

2. Монахов В.С. Произведение разрешимой и циклической групп// Сб. VI всес. симпозиум по теории групп.-Киев: Наукова думка, 1980-с.189-195

3. Монахов В.С. О произведении двух групп с циклическими подгруппами индекса 2// Весцi АН Беларусi. сер. фiз.-мат. навук.-1996, №3-с.21-24

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы