Произведение двух групп
т. е. подстановка имеет
циклов, каждый длины
. Декремент подстановки равен
и есть нечетное число, поэтому
- нечетная подстановка. Теперь
, а так как индекс
в
равен 2, то
- подгруппа индекса 2 в группе
.
Лемма 2 обобщает лемму А. В. Романовского.
Замечание. Простая группа является произведением двух подгрупп
и
, причем
, а
- группа порядка
с циклической силовской 2-подгруппой. Этот пример показывает, что требование
отбросить нельзя.
Лемма 3 . Пусть - дважды транзитивная группа подстановок на множестве
и пусть
- стабилизатор некоторой точки
. Тогда все инволюции из центра
содержатся в
.
Доказательство. Пусть . Допустим, что существует
, причем
. Так как
транзитивна на
, то
. Ho
, поэтому
и
- тождественная подстановка. Противоречие. Следовательно,
фиксирует только
. Теперь подстановка
содержит только один цикл длины 1, а так как
- инволюция, то
нечетен. Но
, поэтому существует силовская 2-подгруппа
из
с
и
. Если
, то
, отсюда
и
, т. е.
. Теперь
и из теоремы Глаубермана следует, что
.
Лемма 4 . Пусть центр группы имеет четный порядок и силовская 2-подгруппа из
либо циклическая, либо инвариантна в
. Если
- группа с циклической подгруппой индекса
, то группа
непроста.
Доказательство. Пусть - циклическая подгруппа в
, для которой
, а
- максимальная в
подгруппа, содержащая
. Тогда
. Если
, то
и по лемме С. А. Чунихина группа
непроста. Значит,
.
Допустим, что порядок нечетен. Если
, то
. Если
, то ввиду леммы 2
и поэтому опять
. Рассмотрим представление
подстановками смежных классов по
. Так как
- максимальная в
подгруппа, то
- примитивная группа подстановок степени
. Если
- простое число, то
либо разрешима, либо дважды транзитивна. Если
- составное число, то, так как
- регулярная группа подстановок при этом представлении,
- опять дважды транзитивна. Из леммы 3 следует, что
непроста.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах