Произведение двух групп

Лемма 4 . Пусть и не делит . Тогда не сопряжен ни с одним элементом из .

Доказательство. Если , то и делит . Но по лемме VI.4.5 из, поэтому . Противоречие.

Лемма 5 . Пусть - минимальная нормальная подгруппа группы и . Если разрешима, то и изоморфна подгруппе из .

Доказательство. . Так как разрешима, то и . По лемме 1.4.5 из группа есть группа автоморфизмов .

Лемма 6 . Пусть , где - собственная подгруппа , а циклическая. Если , то справедливо одно из следующих утверждений:

1) и - нормализатор силовской 2-подгруппы, а ;

2) , а ;

3) , а .

Доказательство. См. теорему 0.8 из.

Лемма 7 . Группа при любом является произведением разрешимой подгруппы и циклической.

Доказательство. Если , то утверждение следует из леммы 6. Пусть , и - силовская -подгруппа в . Известно, что циклическая и в есть циклическая подгруппа порядка . Так как и , то .

Лемма 8 . Если , то является произведением разрешимой и циклической подгрупп.

Доказательство. Известно, что , где - циклическая группа порядка, делящего , и нормализует подгруппу , где - силовская 2-подгруппа в . Так как , где - циклическая группа порядка , то и разрешима.

Лемма 9 . Группа является произведением разрешимой подгруппы и циклической. Группа не допускает указанной факторизации.

Доказательство. Группа имеет порядок и в ней содержится подгруппа индекса 2. Так как дважды транзитивна на множестве из 13 символов, то стабилизатор точки имеет порядок и является разрешимой группой. Поэтому является произведением разрешимой подгруппы порядка и циклической подгруппы порядка 13.

Покажем, что не содержит подгруппы индекса 13. Допустим противное и пусть - подгруппа порядка . Так как дважды транзитивна на смежных классах по , то центр имеет нечетный порядок по лемме 2.2, а по лемме Берноайда , где .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы