Рассеяние рентгеновских лучей на молекулах фуллерена
Все рассчитанные угловые распределения интенсивности рассеянного рентгеновского излучения нормируются на интенсивность центрального максимума.
а б
Рис.4.1. Дифракционные картины рентгеновских лучей, рассеянных молекулой фуллерена C60.
Длина волны
рентгеновского излучения а) l = 1,54 Å, б) l = 0,71 Å.
Ось симметрии 5-го порядка молекулы C60 параллельна волновому вектору k0 первичной рентгеновской волны.
а б
Рис.4.2. Дифракционные картины рентгеновских лучей, рассеянных атомными кластерами.
а) икосаэдрический кластер, состоящий из атомов бора, ось симметрии 3-го порядка параллельна волновому вектору k0
б) остаэдрический кластер, состоящий из атомов кремния, ось симметрии 4-го порядка параллельна волновому вектору k0
Длина волны рентгеновского излучения l = 0,71 Å.
На рис.4.1. – 4.2. приведены примеры полярных диаграмм углового распределения интенсивности рассеянных рентгеновских лучей для разных рассеивателей и длин волн рентгеновского излучения.
На всех полярных диаграммах углового распределения интенсивности рассеянных рентгеновских лучей в центре дифракционной картины (т.е. в окрестностях полярного угла q = 0) расположен центральный дифракционный максимум, интенсивность которого пропорциональна квадрату количества атомов рассеивающего образца.
Компьютерное моделирование рассеяния рентгеновских лучей позволило установить, что поворотная симметрия дифракционной картины соответствует точечной симметрии атомного кластера. Точнее говоря, если ось симметрии n-го порядка атомного кластера параллельна волновому вектору k0 первичной рентгеновской волны, то дифракционная картина обладает поворотной симметрией n-го порядка относительно центра картины, т.е. точки с q = 0.
Дифракционные картины рентгеновских лучей, рассеянных на фрагментах кристаллов, состоящих из многоатомных молекул, имеют более сложный вид. На рисунках 4.3. – 4.5. приведены некоторые характерные примеры.
аб
Рис.4.3. Дифракционная картина рентгеновских лучей, рассеянных фрагментом примитивной кубической решетки, содержащей в узлах молекулы фуллерена C60.
Рассеивающий фрагмент содержит 8 молекул фуллерена C60.
Длина волны рентгеновского излучения а) l = 1,54 Å, б) l = 0,71 Å.
Оси симметрии 5-го порядка молекул C60 параллельны волновому вектору k0 первичной рентгеновской волны.
аб
Рис.4.4. Дифракционная картина рентгеновских лучей, рассеянных фрагментом примитивной кубической решетки, содержащей в узлах молекулы фуллерена C60.
Рассеивающий фрагмент содержит 27 молекул фуллерена C60.
Длина волны рентгеновского излучения а) l = 1,54 Å, б) l = 0,71 Å.
Оси симметрии 5-го порядка молекул C60 параллельны волновому вектору k0 первичной рентгеновской волны.
…
аб
Рис.4.5. Дифракционная картина рентгеновских лучей, рассеянных фрагментом гранецентрированной кубической решетки, содержащей в узлах молекулы фуллерена C60.
Рассеивающий фрагмент содержит 14 молекул фуллерена C60.
Длина волны рентгеновского излучения а) l = 1,54 Å, б) l = 0,71 Å.
Оси симметрии 5-го порядка молекул C60 параллельны волновому вектору k0 первичной рентгеновской волны.
Легко видеть, что дифракционные картины рентгеновских лучей, рассеянных фрагментами кристаллов, вообще говоря, теряют поворотную симметрию свойственную отдельным молекулам или атомным кластерам.
Для исследования симметрийных особенностей дифракционных картин типа представленных на рис.4.3. – 4.5. целесообразно использовать расчеты поворотной псевдосимметрии.
3.1.3. Псевдосимметрия дифракционных картин рассеяния рентгеновских лучей на фрагментах кристаллов фулеритов
Согласно методике, изложенной в предыдущем разделе, были проведены анализ степени инвариантности дифракционных картин, полученных при рассеянии рентгеновских лучей на молекулах фуллеренов С60 и на фрагментах кристаллов фулеридов.
Расчеты коэффициентов псевдосимметрии проводились отдельно для поддиапазонов полярного угла шириной dq = 5° (5 угловых градусов). Вычисления были сделаны для двух различных длин волн первичного рентгеновского излучения l = 0,71 Å и l = 1,54 Å, что соответствует характеристическим линиям К-альфа молибдена и меди.
Степень инвариантности дифракционных картин была рассчитаны, в первую очередь, для порядков поворота n = 2, 3, 4, 5; иначе говоря, для углов поворота полярной диаграммы an = 180°, 120°, 90°, 72°.
Пример полученных результатов приведен на рис.4.2.
Рис.4.2. Гистограмма коэффициентов поворотной псевдосимметрии дифракционных картин, полученных при рассеянии рентгеновских лучей с диной волны l = 0,71 на молекуле фуллерена С60.
По вертикали отложены значения степени инвариантности ha, по горизонтали – порядковые номера поддиапазонов полярного угла шириной dq = 5°. Ось симметрии 5-го порядка молекулы C60 параллельна волновому вектору k0 первичной рентгеновской волны.
На рис.4.2. видно, что коэффициент поворотной псевдосимметрии равен единице во всех поддиапазонах полярного угла. Если порядок поворота дифракционной картины совпадает с порядком оси симметрии облучаемого объекта, вдоль которой направлен волновой вектор k0 первичной рентгеновской волны. Это характерная особенность наблюдается для атомных кластеров любой точечной симметрии.
Кристаллы фуллеридов состоят из отдельных молекул фуллеренов (рис.4.3), которые образуют трансляционно упорядоченную пространственную структуру.
Рис. 4.3. Молекула фуллерена
В настоящей работе были проведены расчеты коэффициентов поворотной псевдосимметрии дифракционных картин, формируемых при рассеянии рентгеновских лучей на небольших кубических фрагментов кристаллов, состоящих из молекул фуллеренов С60. На рис.4.4. – 4.5. приведены сравнительные гистограммы поворотной псевдосимметрии дифракционных картин для порядков поворота n = 4 и n = 5, полученных при рассеянии рентгеновских лучей на кристаллических фрагментах, содержащих различное количество молекул С60 (и следовательно, различное число атомов).
Для сравнения на рис.4.4. представлены гистограммы для одной молекулы фуллерена С60, рассчитанные при идентичных условиях и параметрах.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода