Некоторые задачи оптимизации в экономике

1.В суточный рацион включают два продукта питания П1 и П2, причём продукта П1 должно войти в дневной рацион не более 200 ед. Стоимость питательных веществ в 1 ед. продукта, минимальные нормы потребления указаны в таблице. Определить оптимальный рацион питания, стоимость которого будет наименьшей.

Питательные

вещества

Минимальная норма

потребления

Содержание питательных

веществ в 1 ед. продукта.

П1

П1

А

В

120

160

0,2

0,4

0,2

0,2

Решение.

Обозначим х1 – количество продукта питания П1,

х2 – количество продукта питания П2.

F=2 х1 +4 х2 →min. (суммарная стоимость) При ограничениях

х1 ≤ 200,

0,2 х1 +0,2 х2 ≥120,

0,4 х1 +0,2 х2 ≥160.

Графическим решением системы ограничений является множество точек плоскости, называемое областью допустимых решений (ОДР). Линии уровня 2х1+4х2=0 х2=-х1.

Получаем, что минимальное значение, при заданных ограничениях на переменные, достигается в точке А(200;400). F(A)=2000.

Ответ: наименьшая стоимость 2000 будет при рационе 200 ед. продукта П1 и 400 ед. продукта П2.

Не всегда бывает единственное оптимальное решение. Рассмотрим другую задачу.

2. F=4x1+4x2 →max. При ограничениях

2x1+x2 ≥7,

x1-2x2 ≥-5,

x1+x2≤14,

2x1-x2 ≤18.

Решив, систему ограничений найдём ОДР. Линия уровня будет иметь вид 4x1+4x2=0 x2=-x1.

В данной задаче линия уровня с максимальным уровнем совпадает с граничной линией многоугольника решений. Найдём точку пересечения линии II с линией III:

х1=.

Найдём точку пересечения линии III с линией IV: 14- х1=2 х1-18. Отсюда х1= . Следовательно, х1=c, x2=14-c, c[;]. Пусть х1=9 [;], х2=5.

F=4·9+4·5=56.

Ответ: Fmax=56 при множестве оптимальных решений х1=c, x2=14-c, где c[;].

Рассмотренный геометрический метод решения ЗЛП обладает рядом достоинств. Он прост, нагляден, позволяет быстро и легко получить ответ.

Однако есть и недостатки. Возникают «технические» погрешности, которые неизбежно возникают при приближенном построении графиков. Второй недостаток геометрического метода заключается в том, что многие величины, имеющие чёткий экономический смысл (например, такие, как остатки ресурсов производства), не выявляются при геометрическом решении задач. Его можно применять только в том случае, когда число переменных в стандартной задаче равно двум. Поэтому необходимы аналитические методы, позволяющие решать ЗЛП с любым числом переменных и выявить экономический смысл, входящих в них величин.

Одним их таких методов является симплексный метод.

В данном пункте была рассмотрена теорема, из которой следует, что если ЗЛП имеет оптимальное решение, то оно соответствует хотя бы одной угловой точке многогранника решений. Поэтому решение ЗЛП может быть следующим: перебрать конечное число всех угловых точек многогранника решений и выбрать среди них ту, на которой функция цели принимает оптимальное решение. Однако, практическое осуществление такого перебора связано с трудностями, т.к. число решений может быть чрезвычайно велико.

Пусть ОДР изображается многоугольником ABCDEGH. Предположим,

что его угловая точка соответствует исходному допустимому решению. При беспорядочном наборе пришлось бы перебирать все 7 угловых точек многогранника. Однако, из чертежа видно, что после вершины А выгодно перейти к соседней вершине В, а затем – к оптимальной точке С. Вместо семи перебрали 3 вершины, последовательно улучшая линейную функцию.

Идея последовательного улучшения решения легла в основу универсального метода решения ЗЛП – симплексного метода. Для использования симплексного метода ЗЛП должна быть приведена к каноническому виду. Для реализации симплексного метода необходимо освоить 3 основных элемента:

· способ определения какого – либо первоначального допустимого решения

· правило перехода к лучшему решению

· критерий проверки оптимальности найденного решения.

Алгоритм конкретной реализации этих элементов рассмотрим на примере.

Практические расчёты при решении реальных задач симплексным методом выполняются в настоящее время с помощью компьютера, однако, если расчёты выполняются без ЭВМ, то удобно использовать симплексные таблицы.

Алгоритм составления симплексных таблиц:

1. Система ограничений приводится к каноническому виду.

Для нахождения первоначального базисного решения переменные разбиваются на основные и неосновные. Т.к. определитель, составленный из коэффициентов при дополнительных переменных отличен от нуля, то эти переменные можно взять в качестве основных. При выборе основных переменных не обязательно составлять определитель, достаточно воспользоваться следующим правилом: в качестве основных переменных следует выбрать такие, каждая из которых входит только в одно из уравнений системы ограничений, при этом нет таких уравнений системы, в которые не входит ни одна из этих переменных.

2. Составляют таблицу, где в последней строке указываются коэффициенты функции с противоположным знаком. В левом столбце таблицы записывают основные переменные, в первой строке – все переменные, в последнем столбце свободные члены системы.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы