Некоторые задачи оптимизации в экономике
|
нкции L: x1+2x2=C. Выразим x2=. Линиями уровня будут параллельные прямые с угловым коэффициентом, равным -. Минимум функции достигается в точке (0;0), Lmin=0, т.к. градиент (1,2) направлен вверх вправо. Максимум достигается в точке касания кривой х2= и линии уровня. Т.к. угловой коэффициент касательной к графику функции равен -, найдём координаты точки касания, используя геометрический смысл производной.
=-; ()=-;
=-; x0=; x2=2.
Тогда L=+2∙2=5.
Ответ: Минимум достигается в точке О(0;0), глобальный максимум, равный 5, в точке А(;2) .
2. Найти экстремумы функции L=(x1-6)2+(x2-2)2 при ограничениях
x1+x2≤8
3 x1+x2 ≤15
x1+x2 ≥1
.
Решение. ОДР – многоугольник ABCDE. Линии уровня представляют собой окружности (x1-6)2+(x2-2)2=С с центром в точке О1(6;2). Возьмём, например, С=36, видим, что максимум достигается в точке А(0;4), которая лежит на окружности наибольшего радиуса, пересекающую ОДР. L(A)=(0-6)2+(4-2)2=40. Минимум - в точке F, находящейся на пересечении прямой 3x1+x2 =15 и перпендикуляра к этой прямой, проведённого из точки О1. Т.к. угловой коэффициент равен -3, то угловой коэффициент перпендикуляра равен . Из уравнения прямой, проходящей через данную точку О1 с угловым коэффициентом , получим (x2-2)= (x1-6). Найдём координаты точки Е
х1-3х2=0
3 x1+x2 =15.
Решив систему, получаем Е(4.5; 1.5).
L (E) = (4.5-6)2+ (1.5-2)2=2.5.
Ответ: Минимум, равный 2.5 достигается в точке (4.5; 1.5), максимум, равный 40, в точке (0;4).
3. Найти экстремумы функции L=(x1-1)2+(x2-3)2
при ограничениях , .
Решение: ОДР является часть круга, с центром в начале координат, с радиусом 5, расположенная в I четверти. Линии уровня – это окружности с центром в точке О1 и радиуса С, т.к. (x1-1)2+(x2-3)2=С. Точка О1 – это вырожденная линия уровня, соответствующая минимальному значению С=0. глобальный максимум достигается в точке А, лежащей на пересечении ОДР с линией уровня наибольшего радиуса. При этом
L(A)=(5-1)2+(0-3)2=25.
Ответ: Минимум, равный 0, достигается в точке (1;3),
Максимум, равный 25, - в точке А(5;0).
4. Предприниматель решил выделить на расширение своего дела 150 тыс.руб. известно, что если на приобретение нового оборудования затратить х тыс. руб., а на зарплату вновь принятых работников у тыс. руб., то прирост объёма продукции составит Q=0.001x0.6·y0.4 . Как следует распределить выделенные денежные ресурсы, чтобы прирост объёма продукции был максимальным.
Решение: Целевая функция имеет вид 0.001x0.6·y0.4 →max при ограничениях x+y≤150,
.
ОДР – треугольник. Линии уровня будут иметь вид 0.001x0.6·y0.4 =С. Выразив отсюда у, получим у=. Т.к. максимум достигается в точке касания линии уровня с ОДР, то условие касания имеет вид =-1. Найдя производную, получаем =-1. Выразив х, получим х=. у==.
Ответ: Факторы х и у следует распределить в отношении 2:3.
5.Предприятие выпускает изделия А и Б, при изготовлении которых используется сырьё S1 и S2. Известны запасы bi (i=1,2) сырья, нормы его расхода на единицу изделия aij (j=1,2), оптовые цены pj на изделия и их плановая себестоимость с. Как только объём выпускаемой продукции перестаёт соответствовать оптимальному размеру предприятия, дальнейшее увеличение выпуска хj ведёт к повышению себестоимости продукции b, в первом приближении фактическая себестоимость сj описывается функцией сj= с+ схj, где сj – некоторая постоянная. Все числовые данные приведены в таблице
b1 |
b2 |
a11 |
a12 |
a21 |
a22 |
p1 |
p2 |
с |
с |
с |
с |
90 |
88 |
13 |
6 |
8 |
11 |
12 |
10 |
7 |
8 |
0.2 |
0.2 |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Экономико-статистический анализ реализации продукции растениеводства
- Методика эксперимента и расчет технологического режима получения антифрикционного покрытия
- Разработка имитационной модели грузового терминала
- Особенности развития Российской экономики в условиях формирования рыночных отношений
- Анализ рядов распределения
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели