Методика решения иррациональных уравнений и неравенств в школьном курсе математики

.

Поскольку , , то должны выполнятся условия , , ght=31 src="images/referats/27429/image318.png">(соответственно ). На множестве, где эти условия выполняются, данное неравенство равносильно неравенству .

(соответственно неравенству ), которое сводится к разобранным выше типам неравенств. [4]

Пример 8. Решить неравенство .

Решение. Данное неравенство равносильно следующей системе неравенств:

Последнее неравенство этой системы приводится к виду , откуда находим, что . Решение исходного неравенства является общей частью решений всех неравенств системы, т.е. имеет вид .

Ответ. .

Для решения иррациональных неравенств, так же как и для решения иррациональных уравнений, с успехом может применяться способ подстановки или введения новой переменной.

Весьма эффективны так называемые рационализирующие подстановки. Применение рационализирующих подстановок позволяет привести функцию, иррациональную относительно исходной переменной, к рациональной функции относительно новой переменной.

Пример 9. Решить неравенство .

Решение. Введем новую переменную t с помощью рационализирующей подстановки , .

Тогда и для переменной t получаем рациональное неравенство

, где .

Ответ. .

В данной курсовой работе сделана попытка разработать методику обучения решению иррациональных уравнений и неравенств в школе.

В ходе работы были решены следующие задачи:

Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы:

теория методов изложена не достаточно строго;

в одном учебнике материала по методам решения иррациональных уравнений нет. В остальных учебниках рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных преобразований;

очень мало материала по методам решения иррациональных неравенств;

среди предлагаемых заданий много однотипных;

Изучены стандарты образования по данной теме;

Изучена учебно-методическая литература по данной теме;

Рассмотрены ситуации, связанные с потерей или приобретением посторонних корней в процессе решения, показано, как их распознавать и как с ними можно бороться;

Подобраны примеры решения иррациональных уравнений и неравенств для демонстрации излагаемого теоретического материала;

Показано, что общие методы решения уравнений применимы для решения иррациональных уравнений и неравенств.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы