Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Пример 11. Решите уравнение .
Решение. Для решения таких уравнений следует пользоваться правилом расщепления:
Произведение равно нулю тогда и только тогда, когда хотя бы один из входящих в него сомножителей равен нулю, а остальные при этом имеют смысл.
Первый множитель равен нулю при , но тогда второй множитель потеряет смысл, так как при
он равен
. Значит,
решением данного уравнения быть не может.
Второй множитель равен нулю при или
. Первый множитель определен для всех действительных чисел, значит,
и
могут быть решениями данного уравнения. Ответ.
,
2. Метод введения новой переменной.
Мощным средством решения иррациональных уравнений является метод введения новой переменной, или "метод замены". Метод обычно применяется в случае, если в уравнении неоднократно встречается некоторое выражение, зависящее от неизвестной величины. Тогда имеет смысл обозначить это выражение какой-нибудь новой буквой и попытаться решить уравнение сначала относительно введенной неизвестной, а потом уже найти исходную неизвестную. В ряде случаев удачно введенные новые неизвестные иногда позволяют получить решение быстрее и проще; иногда же без замены решить задачу вообще невозможно. [6], [17]
Пример 12. Решить уравнение .
Решение. Положив , получим существенно более простое иррациональное уравнение
. Возведем обе части уравнения в квадрат:
.
Далее последовательно получаем:
;
;
;
;
,
.
Проверка найденных значений их подстановкой в уравнение показывает, что
- корень уравнения, а
- посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение , т.е. квадратное уравнение
, решив которое находим два корня:
,
.
Ответ: ,
.
Замена особенно полезна, если в результате достигается новое качество, например, иррациональное уравнение превращается в квадратное.
Пример 13. Решить уравнение .
Решение. Перепишем уравнение так: .
Видно, что если ввести новую переменную , то уравнение примет вид
, откуда
,
.
Теперь задача сводится к решению уравнения и уравнения
. Первое из этих решений не имеет, а из второго получаем
,
.
Ответ. ,
.
Отметим, что "бездумное" применение в Примере 11 метода "уединения радикала" и возведение в квадрат привело бы к уравнению четвертой степени, решение которого представляет собой в общем случае чрезвычайно сложную задачу.
Пример 14. Решить уравнение
.
Введем новую переменную
,
.
Исходное уравнение принимает вид
,
откуда учитывая ограничение , получаем
. Тогда
.
Ответ. .
Уравнения вида (здесь a, b, c, d - некоторые числа, m, n - натуральные числа, обычно не превосходящие 4) и ряд других уравнений часто удается решить при помощи введения двух вспомогательных неизвестных и последующего перехода к рациональной системе. Пример 15. Решить уравнение
.
Решение. Введем новые переменные
и
.
Тогда исходное уравнение принимает вид: . Полученное уравнение обладает одним существенным недостатком: в нем две неизвестных. Но заметим, что величины a и b не являются независимыми переменными - они зависят одна от другой посредством старой переменной x. Выразим x через a и b
и
.
Теперь, можно заметить, что если первое уравнение умножить на два и затем вычесть из него второе, то переменная x исключается, и остается связь только между a и b
Другие рефераты на тему «Педагогика»:
- Психологические барьеры в профессиональной деятельности педагога
- Формирование математических представлений у дошкольников
- Изучение психолого-педагогических особенностей личности тренера
- Формирование навыков общения у дошкольников с задержкой психологического развития
- Процесс обучения навыка диалогической речи через использование ролевой игры
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения