Методика решения иррациональных уравнений и неравенств в школьном курсе математики

вычеркнуть в левой и правой его частях слагаемое , то получится уравнение

,

являющееся следствием исходного: второе уравнение имеет корни , , а первое - единственный корень .

Отметим еще, что если ОДЗ уравнения (4) содержится в области определения функции , то уравнения (3) и (4) равносильны.

Умножение обеих частей уравнения на одну и ту же функцию, то есть переход от уравнения (4) к уравнению

.

Справедливы следующие утверждения:

если ОДЗ уравнения (4), то есть пересечение областей определения функций и , содержится в области определения функции , то уравнение (5) является следствием уравнения (4);

если функция определена и отлична от нуля в ОДЗ уравнения (4), то уравнения (4) и (5) равносильны.

Заметим, что в общем случае переход от уравнения (5) к уравнению (4) недопустим: это может привести к потере корней.

При решении уравнений вида (5) обычно заменяют его равносильным уравнением

,

затем находят все корни уравнений

и

и, наконец, проверяют, какие из этих корней удовлетворяют уравнению.

Возведение обеих частей уравнения в натуральную степень, то есть переход от уравнения

(6)

к уравнению

. (7)

Справедливы следующие утверждения:

при любом уравнение (7) является следствием уравнения (6);

если (n - нечетное число), то уравнения (6) и (7) равносильны;

если (n - четное число), то уравнение (7) равносильно уравнению

, (8)

а уравнение (8) равносильно совокупности уравнений

. (9)

В частности, уравнение

(10)

равносильно совокупности уравнений (9).

Следовательно, исходя из утверждений 1 и 2, возведение обеих частей уравнения в нечетную степень и извлечение из обеих частей уравнения корня нечетной степени является равносильным преобразованием.

Исходя из утверждения 1 и 3, возведение обеих частей уравнения в четную степень и извлечение из обеих частей уравнения корня четной степени является неравносильным преобразованием, при этом получается уравнение, являющееся следствием исходного.

Применение формулы при является равносильным преобразованием, при - неравносильным.

Преобразования уравнений, рассмотренные в пунктах 3, 4 и 5 будут продемонстрированы на примерах ниже.

Методика решения иррациональных уравнений

В работе будем придерживаться следующего определения иррационального уравнения:

Иррациональным уравнением называется уравнение, содержащее неизвестное под знаком корня.

Прежде чем приступить к решению сложных уравнений учащиеся должны научиться решать простейшие иррациональные уравнения. К простейшим иррациональным уравнениям относятся уравнения вида:

Основная идея решения иррационального уравнения состоит в сведении его к рациональному алгебраическому уравнению, которое либо равносильно исходному иррациональному уравнению, либо является его следствием.

Главный способ избавиться от корня и получить рациональное уравнение - возведение обеих частей уравнения в одну и ту же степень, которую имеет корень, содержащий неизвестное, и последующее "освобождение" от радикалов по формуле .

Если обе части иррационального уравнения возвести в одну и ту же нечетную степень и освободиться от радикалов, то получится уравнение, равносильное исходному.

При возведении уравнения в четную степень получается уравнение, являющееся следствием исходного. Поэтому возможно появление посторонних решений уравнения, но не возможна потеря корней. Причина приобретения корней состоит в том, что при возведении в четную степень чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат.

Так как могут появиться посторонние корни, то необходимо делать проверку, подставляя найденные значения неизвестной только в первоначальное уравнение, а не в какие-то промежуточные.

Рассмотрим применение данного метода решения иррациональных уравнений.

Пример 1. Решите уравнение .

Решение. Возведем обе части этого уравнения в квадрат и получим , откуда следует, что или .

Проверка. : . Это неверное числовое равенство, значит, число не является корнем данного уравнения.

: . Это верное числовое равенство, значит, число является корнем данного уравнения.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы