Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Если в условиях задачи не указано, на каком множестве нужно решить уравнение, то решение следует искать на ОДЗ этого уравнения.
В процессе решения часто приходится преобразовывать уравнение, заменяя его более простым (с точки зрения нахождения корней).
Есть одно правило, которое не следует забывать при преобразовании уравнений: нельзя выполнять преобразования, которые могут привести к п
отере корней.
Назовем преобразование уравнения (1) допустимым, если при этом преобразовании не происходит потери корней, то есть получается уравнение
, (2)
которое либо имеет те же корни, что и уравнение (1), либо, кроме всех корней уравнения (1), имеет хотя бы один корень, не являющийся корнем уравнения (1), посторонний для уравнения (1) корень. В связи с этим используют следующие понятия.
Уравнение (2) называется следствием уравнения (1), если каждый корень уравнения (1) является корнем уравнения (2).
Уравнения (1) и (2) называются равносильными (эквивалентными), если каждое из этих уравнений является следствием другого. Иными словами, уравнения (1) и (2) равносильны, если каждый корень уравнения (1) является корнем уравнения (2) и наоборот, каждый корень уравнения (2) является корнем уравнения (1). Уравнения, не имеющие корней, считаются равносильными.
Если уравнения (1) и (2) равносильны, то пишут или (1) (2), а если уравнение (2) является следствием уравнения (1), то пишут или (1) (2).
Отметим, что если исходное уравнение с помощью допустимых преобразований заменено другим, причем в процессе преобразования хотя бы один раз уравнение заменялось неравносильным ему следствием, то проверка найденных корней путем подстановки в исходное уравнение является обязательной.
Если же при каждом преобразовании уравнение заменялось равносильным, то проверка не нужна (не следует путать проверку с контролем вычислений).
Рассмотрим еще одно понятие, связанное с решением уравнений. Будем говорить, что уравнение (1) равносильно совокупности уравнений , (3) если выполнены следующие условия: каждый корень уравнения (1) является корнем, по крайней мере, одного из уравнений (3); любой корень каждого из уравнений (3) является корнем уравнении я (1).
Если указанные условия выполнены, то множество корней уравнения (1) является объединением множеств корней уравнений (3).
Если уравнение записано в виде
, (4)
то каждое решение этого уравнения является решением, по крайней мере, одного из уравнений
(5)
Однако нельзя утверждать, что любой корень каждого из уравнений (5) есть корень уравнения (4).
Например, если , то - корень уравнения , но число 3 не является корнем уравнения (4), так как функция не определена при .
Таким образом, в общем случае нельзя утверждать, что уравнение (4) равносильно совокупности уравнений (5).
Чтобы решить уравнение (4), достаточно найти корни уравнений и , а затем отбросить те, которые не входят в ОДЗ уравнения (4), то есть не принадлежат множеству, на котором определены функции и .
В ОДЗ уравнения (4) это уравнение равносильно совокупности уравнений (5).
Справедливо более общее утверждение: если функция определена при всех x таких, что , а функция определена при всех x таких, что , то уравнение (4) равносильно совокупности уравнений (5).
Наиболее важные приемы преобразования уравнений
Все преобразования уравнений можно разделить на два типа:
равносильные, то есть преобразования, после применения любых из которых получится уравнение, равносильное исходному.
Неравносильные, то есть преобразования, после применения которых может произойти потеря или приобретение посторонних корней.
Рассмотрим некоторые преобразования уравнений и выясним, к каким типам они относятся.
Перенос членов уравнения из одной части в другую, то есть переход от уравнения
(1)
к уравнению
. (2)
Указанное преобразование приводит к равносильному уравнению, то есть (1) (2).
В частности, .
Заметим, что здесь речь идет только о переносе членов уравнения из одной его части в другую без последующего приведения подобных членов (если таковые имеются).
Приведение подобных членов, то есть переход от уравнения
(3)
к уравнению
. (4)
Справедливо следующее утверждение: для любых функций ,, уравнение (4) является следствием уравнения (3), то есть (3) (4).
Переход от уравнения (3) к уравнению (4) является допустимым преобразованием, при котором потеря корней не возможна, но могут появиться посторонние корни.
Таким образом, при приведении подобных членов, а также при отбрасывании одинаковых слагаемых в левой и правой частях уравнения получается уравнение, являющееся следствием исходного уравнения.
Например, если в уравнении
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения