Факультативный курс по теме "Элементы комбинаторики" для 8 класса
4. Не должно быть несогласованности с нормами организации работы общеобразовательной школы. Например, нельзя часы, отведенные на факультативные занятия, использовать для внеклассной работы или дополнительных занятий по математике.
5. Главным критерием эффективности взаимосвязанного построения факультативных занятий по математике должна быть результативность неразрывно связанных друг с друго
м процессов обучения, развития и воспитания школьников.
6. Факультативных занятия по математике целесообразно проводить, учитывая их функции – развивающую, воспитывающую и учебную.
Методические рекомендации по организации факультативных занятий
Взаимосвязь в содержании, формах и методах организации учебной работы и факультативных занятий.
Обеспечение взаимосвязи (по содержанию) уроков и факультативных занятий.
Единство в содержании факультативных занятий различных разделов математики.
Активизация самостоятельной работы учащихся.
Построение учебного процесса как совместной исследовательской деятельности учащихся.
Использование наглядных пособий, применение конспект-таблиц на лекциях.
Использование системы ключевых задач по темам на факультативных занятиях.
Использование историко-математического материала на факультативных занятиях.
Принципы занимательности занятий.
Построение занятий проблемного изучения материала.
Прежде всего, факультативные занятия должны быть интересными, увлекательными для школьников. Хорошо известно, что занимательность изложений помогает раскрытию содержания сложных научных понятий и проблем. Занимательность поможет школьникам освоить факультативный курс, содержащиеся в нем идеи и методы математической науки, логику, и приемы творческой деятельности. В этом отношении цель учителя - добиться понимания учениками того, что они подготовлены к работе над сложными проблемами, однако для этого необходима заинтересованность предметом, трудолюбие, владение навыками, организации своей работы.
Возможность 1-2 часа в неделю дополнительно работать со школьниками, проявляющими повышенный интерес и способности к математике, представляет собой одно из проявлений новой формы обучения математике - дифференцированного обучения.
По существу факультативные занятия являются наиболее динамичной разновидностью дифференциации обучения.
В какой бы форме, и какими бы методами не проводились факультативные занятия по математике, они должны строиться так, чтобы быть для учащихся интересными, увлекательными, а подчас и занимательными. Необходимо использовать естественную любознательность школьника для формирования устойчивого интереса к своему предмету.
Известный французский физик Луи де Бройль писал, что современная наука – «дочь удивления и любопытства, которые всегда являются ее скрытыми движущими силами, обеспечивающими ее непрерывное развитие».
Основными формами проведения факультативных занятий по математике являются в настоящее время изложение узловых вопросов данного факультативного курса учителем (лекционным методом), семинары, собеседования (дискуссии), решение задач, рефераты учащихся (как по теоретическим вопросам, так и по решению цикла задач), математические сочинения, доклады учащихся и т. д.
Однако учителю не следует отдавать предпочтение какой-либо одной форме или методу изложения. Вместе с тем, памятуя о том, что на факультативных занятиях по математике самостоятельная работа учащихся должна занять ведущее положение, следует все же чаще применять решение задач, рефераты, доклады, семинары-дискуссии, чтение учебной и научно-популярной литературы и т. п.
Одной из возможных форм ведения факультативных занятий по математике является разделение каждого занятия на две части. Первая часть посвящается изучению нового материала и самостоятельной работе учащихся по заданиям теоретического и практического характера. По окончании этой части занятия учащимся предлагается домашнее задание по изучению теории и ее приложений. Вторая часть каждого занятия посвящена решению задач повышенной трудности и обсуждению решений особенно трудных или интересных задач. Эта форма проведения факультативных занятий может способствовать успешному переходу от форм и методов обучения в школе к формам и методам обучения в высших учебных заведениях.
Также при проведении факультативных занятий можно использовать методы изучения (а не обучения) математики, а также проблемную форму обучения.
В частности, ее можно осуществить, если представить изучаемый факультативный курс в виде серии последовательно расположенных задач. Решая последовательно все задачи самостоятельно или при незначительной помощи преподавателя, школьники постепенно изучают курс при большом личном участии, проявляя активность и самостоятельность, овладевая техникой математического мышления.
Теоремы имеют вид задач. Если теорема, которую учащиеся должны доказать, является большой или трудной, то она разбивается на несколько задач так, что решение предыдущей помогает решить последующую. Определения либо включаются преподавателем в текст задачи, либо сообщаются особо. В необходимых случаях преподаватель проводит предварительную беседу или делает обобщения.
Полезно также широко использовать задачи проблемного характера.
В настоящее время факультативные занятия по математике проводятся по двум основным направлениям:
а) изучение курсов по программе «Дополнительные главы и вопросы курса математики»;
б) изучение специальных математических курсов.
Содержание программы «Дополнительные главы и вопросы» систематического курса математики позволяет решить и углубить изучение программного материала, ознакомить учащихся с некоторыми общими современными математическими идеями, раскрыть приложения математики в практике, готовит учителя к работе по новой программе.
На самих занятиях качество усвоения теории проверяется в процессе решения задач и примеров. Здесь совершенно недопустимы такие формы работы, которые сковывали бы инициативу учащихся. Занятие начинается с постановки упражнения для всех учащихся. За время, которое отводится на выполнение задачи или примера, учитель успевает проследить, кто и как справляется с заданием. Не следует торопить учащихся. Обычно, если не все, то некоторые из них выполняют задание в запланированное учителем время, а затем начинается разбор и теоретическое обоснование решений. Инициатива в оценке способов решения, в исправлении ошибок, в постановке вопросов представляется самим учащимся. В процессе этой работы достигается логическая точность в формулировках определений понятия или их свойств. В заключительном слове учитель дает мотивированную оценку знаний учащихся. Помимо указанной формы контроля знаний, целесообразно проводить кратковременные 15-20-минутные проверочные работы.
На занятиях полезно практиковать постановку докладов учащихся. При подготовке к докладам учащиеся используют различную дополнительную литературу, указанную учителем. Не следует увлекаться большим количеством докладов, в противном случае, у учителя просто не хватит времени для хорошей подготовки докладчиков.
Другие рефераты на тему «Педагогика»:
- Формы и виды контроля знаний
- Реформа высшей школы глазами студентов и преподавателей
- Социально-педагогическая теория эстетического освоения мира учащимися в системе дополнительного образования детей
- Формирование социально-бытовой ориентировки как средство развития гендерных представлений подростков с умственной отсталостью
- Изучение астрофизических вопросов в школьном курсе физики
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения