Методика обучения школьников планиметрии с использованием объектных моделей

Из того, что треугольник равнобедренный

(2)

Из равенства (1) и (2), делаем вывод:

Другими словами BD-биссектриса.

Решим еще одну задачу:

Підпис: Дано: ÕAC
Найти: сумму углов треугольника

Підпис: Рис. 28.

Ребята посмотрите в руках у меня модель сделанная из картона, рисунок такой же, как на доске (рис. 29.). Что мы можем сказать про углы.

Підпис: B

Підпис: C

Підпис: Рис. 31Підпис: Рис. 30.Підпис: Рис. 29.

Они равны.

Почему?

Эти углы накрест лежащие при параллельных прямыхи AC и секущей AB.

Верно, посмотрим на модель.

(учитель разворачивает угол 1 (рис 30.)и показывает на модели, что углы действительно равны)

По аналогии, что мы можем сказать про углы ABC и CBE?

Они тоже равные.

(Учитель разворачивает угол 2 (рис. 31.) и показывает, что углы действительно равны)

В итоге мы получаем, что:

Это не, что иное, как сумма углов треугольника. А случайно ли сумма углов треугольника равна 180 или этим свойством обладает любой треугольник?

Этим свойством обладает любой треугольник, так как выбор треугольника не изменит равенство накрест лежащих углов. В итоге мы получаем, что:

У каждого треугольника сумма углов равна 1800

Это утверждение носит название: теорема о сумме углов треугольника

И так тема нашего урока: «Сумма углов треугольника. Внешний угол треугольника».

4 Этап изучение нового материала.

Открыли тетради, отступили четыре клеточки, записали число, классная работа и тему нашего урока

Классная работа.

Сумма углов треугольника. Внешний угол треугольника.

Запишем план доказательства:

Максим, Дима, Маша работают у доски.

План доказательства:

Построить DEÕAC через вершину B,

Доказать, что

Доказать, что если то (рис. 32)

Молодцы, ребята, садитесь.

Мы с вами рассмотрели сумму углов треугольника, а теперь введем определение внешнего угла треугольника и запишем его в тетрадь.

Внешним углом треугольника называется угол, несмежный с внутренним.

Посмотрите на доску (рис. 33.).

Назовите внешний угол треугольника.()

Задание классу: докажите, что и сформулируйте свойство.

Доказательство: и смежные и получаем . Угол ACB из суммы углов треугольника равен . Подставляем

.

Запишем свойство в тетрадь.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Посмотрим на модель (рис 34)., на ней нарисован треугольник и внешний угол треугольника. Передвинем угол 1 и развернем угол 2. Получили, что внешний угол треугольника равен сумме двух других углов?

Підпис: Рис. 34.

5 Этап первичного осмысления и применения материала.

Выполним устно №223(б), в), г).), №225, №226.

№223 б)260;

в)1800-3a;

г)600.

№225значит

№226. Если бы углы при основании равнобедренного треугольника бы прямыми или тупыми, то сумма этих углов была бы уже равна или больше1800, что противоречит теореме о сумме углов треугольника.

Письменно: №228(в), №227(б). Один ученик работает у доски, остальные в тетради.

Вопросы: может ли угол треугольника при основании равнобедренного треугольника быть равен 100.

Чему равна сумма углов при основании данного треугольника? А каждый из них?

№227 (б) Чему равен угол при основании равнобедренного треугольника, если он в три аза меньше внешнего угла смежного с ним?

Чему равны другие углы данного треугольника?

6Этап подведение итогов.

Закрыли тетради. Что мы узнали сегодня нового на уроке.

Мы познакомились с теоремой о сумме углов треугольника, с понятием внешнего угла треугольника.

Какое свойство внешнего угла треугольника мы доказали Даша продиктуй:

Внешний угол треугольника равен сумме двух других углов треугольника не смежных с ним

Всем спасибо за урок, до свидание.

7 этап резервные задачи

№ 227 (а), №229.

Краткий анализ проведенного урока.

Проведенный урок по теме «Сумма углов треугольника. Внешний угол треугольника» прошел успешно, учащиеся на уроке работали активно, отвечали на все поставленные вопросы. Немаловажную роль в этом сыграла достаточно хорошая подготовка учащихся, а также использование различных моделей

Использование средств наглядности очень помогло при изучении темы, с их помощью материал стал более доступным и в течение всего урока учащиеся были заинтересованы в его изучении.

Применение наглядности на уроках изучения планиметрии в основной школе занимает особое место. Систематическое применение моделей позволяет решить проблему более качественного и полного усвоения курса планиметрии, а также способствует повышению темпа усвоения учебного материала, развитию и поддержанию интереса к предмету у школьников.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы