Методика обучения школьников планиметрии с использованием объектных моделей
При знакомстве с углом существенным является представить себе правильно, что эта фигура характеризует степень отклонения угла. В частности такого угла может и не быть, в этом случаи лучи совпадают и угол равен 0. В то же время учащемуся трудно уяснить процесс непрерывного изменения угла. При использовании раздвижной шарнирной модели это явление становится наглядным и очевидным.
55 height=159 src="images/referats/27789/image017.png">
Опишем следующий порядок использования такой модели. Сперва учитель показывает некоторый угол, медленно уменьшает его до нуля, затем увеличивает до угла больше 900. Учащиеся во время демонстрации делают зарисовки в тетради и видят множество углов, среди которых, заданный является частным случаем. Полезно также показать, что удлинение стороны угла не изменяет его величины, это можно сделать, если растянуть или сдвинуть штабики (рис.11), образующие стороны угла.
Шарнирные подвижные модели углов встречаются либо набором моделей, либо в виде отдельных пособий. Недостатками модели являются:
Плохая конструкция муфты, дает грубое представление геометрическому образу-прямой линии.
Неудачный шарнир не позволяет образовать ни малых углов, ни нулевого положения.
Модель искажает понятие вершины угла.
Но это можно разрешить, если использовать вместо планки металлическую трубку и стержни, входящие в них.
Другие шарнирные модели из набора восьми моделей показывают смежные, вертикальные углы, углы при параллельных прямых и др. Эти модели также найдут себе применение для того, чтобы помочь учащимся выявить динамическую сущность вопросов.
Фигура треугольника настолько проста для представления и настолько знакома учащимся из окружающей обстановки, что не нуждается ни в другом изображении, кроме чертежа. Речь может идти иллюстрации на моделях преобразования треугольника из одного вида в другой. В этом смысле чертежи указывают лишь, очень небольшое количество образов; один вид переходит в другой разрывно, скачкообразно. На модели же форма изменяется непрерывно, и перед глазами учащихся проходит множество видов треугольников.
Вместе с углами и сторонами в треугольнике приходится изучать такие элементы, как медиана, перпендикуляр к стороне в её середине (медиатриса), высота и биссектриса. Было бы недостаточно выучить их определения и построить эти линии, в одном - двух треугольниках; необходимо пронаблюдать на подвижной модели, как располагается каждая из них в равнобедренном, правильном, прямоугольном, тупоугольном треугольниках и как они располагаются друг относительно друга.
При трансформации треугольника указанные элементы расположатся иначе: в прямоугольном треугольнике (рис. 12 б) высота 1 совпадёт со стороной (катетом), биссектриса остаётся левее медианы. По мере приближения треугольника к равнобедренному, внутренние элементы его сближаются и, наконец, совпадают: в равнобедренном треугольнике высота, медиана и биссектриса угла при вершине сливаются (рис. 12 в). Перемещая вершину В вправо, мы увидим, что биссектриса переместится и станет вправо от медианы, а высота, постепенно смещаясь, займёт крайнее правое место по отношению к ним (рис. 12 г).
Перечисленные сопоставления помогут глубже представить себе существо дела и свободнее разобраться в задачах, где встречаются различные построения; например, построить равнобедренный треугольник по медиане и высоте, опущенной на боковую сторону, и т. п.
В этом случае исследование задачи, указание на два возможных решения при остром и тупом угле при вершине легче даются учащимся, которые связывают положение внутренних линий в треугольнике с его формой. К данной модели полезно вернуться в VII классе после изучения темы «Углы в окружности» и предложить обосновать конструктивные предпосылки анализируемого пособия. Такого рода упражнение можно рассматривать как несложную задачу на доказательство по данным, полученным учащимися самостоятельно из рассмотрения прибора, а также как упражнение в анализе конструкции технического приспособления.
Большой интерес вызывают зарисовки и наблюдения движения некоторых элементов фигуры. В качестве примера можно привести демонстрацию шарнирного треугольника или треугольника, образованного резиновыми жгутами, в которых при постоянном основании перемещается вершина и изменяется высота фигуры или, наоборот, при сохранении высоты растягивается или сокращается основание, наконец, одновременно меняются оба элемента. После такого рода наблюдений функциональная зависимость периметра или площади от линейных элементов очевидна из геометрических представлений, а не только из формулы. Подобные размышления чрезвычайно способствуют математическому развитию.
Однако с демонстрацией моделей надо быть очень осторожным, так как приспособления, раскраска, разметка, могут отвлечь учащих от геометрической сущности.
Наблюдения «замечательных точек треугольника» может, происходит следующим образом. Выводы существования единых точек пересечения медиан, «биссектрис, перпендикуляров из середин сторон проводятся по отношению к некоторому треугольнику; далее из того, что треугольник берётся произвольный, следует, что полученные свойства присущи треугольникам всех видов. Такого рода обобщение учащиеся иногда принимают на веру, не будучи до конца в этом убеждены. Оказывается, если после логического доказательства подтвердить вывод демонстрацией моделей, представления получаются более осмысленными (рис. 13 а, б).
Вершины резиновой модели треугольника медленно перемещаются, в это время трансформируется самый треугольник, а металлические стержни, изображающие медианы, показывают общую точку пересечения трёх линий. Для случая перпендикуляров стержни закрепляются одним концом в середине стороны, а другой конец остаётся свободным.
Изображение биссектрис основано на свойстве равноудалённости их точек от сторон угла.
Приведем еще одну модель теоремы Пифагора, кроме описанной выше картонной модели.
Квадратный футляр содержит четыре равных прямоугольных треугольника, которые на рис. 14 ( а, б) сложены так, что свободными от них остаются два квадрата, построенные на катетах треугольников.
Другая конфигурация вкладышей-треугольников оставляет открытой площадь квадрата на гипотенузе.
Таким образом, модель наглядно демонстрирует, как из одной и той же площади квадрата-футляра два раза отнималась одинаковая площадь четырёх треугольников, вследствие чего оставались равные площади. А так как последние представлялись в одном случае в виде суммы площадей квадратов, построенных на катетах, а в другом - квадратом на гипотенузе, то и получалась модель для иллюстрации связи на основании теоремы Пифагора.
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения