Методика использования технологии дистанционного обучения при изучении темы "Системы счисления"

Получаем: 36310=1011010112

Решение задач для закрепления изученного материала

Перевести целые десятичные числа 910, 1710 и 24310 в двоичную, восьмеричную и шестнадцатеричную системы счисления.

Перевести десятичные дроби 0,210 и 0,3510 в двоичную, восьмеричную и шестнадцатеричную системы счисления с точностью до трех знаков после запятой.

Урок № 4

Контрольная работа

В-1

.

№ 1.

Представьте в развернутой форме:

а) 4563; б) 100101;

№ 2.

Переведите число 75 из десятичной системы счисления в двоичную.

№ 3.

Выполните действия:

а) 11001101011 + 1110000101; б) 101011 – 10011; в) 1011 · 101.

В-2

№ 1

Представьте в развернутой форме:

а) 1563; б) 100111;

№ 2.

Переведите число 67 из десятичной системы счисления в двоичную.

№ 3.

Выполните действия:

а) 11001101111 + 1110000101; б) 10111 – 10011; в) 1111 · 101.

В-3.

№ 1

Представьте в развернутой форме:

а) 2563; б) 110101;

№ 2.

Переведите число 59 из десятичной системы счисления в двоичную.

№ 3.

Выполните действия:

а) 11111101011 + 1110000111; б) 11111 – 10011; в) 10011 · 101.

В-4.

№ 1

Представьте в развернутой форме:

а) 2573; б) 1010101;

№ 2.

Переведите число 95 из десятичной системы счисления в двоичную.

№ 3.

Выполните действия:

а) 11111101001 + 1110000111; б) 11101 – 10011; в) 10111 · 101.

Урок № 5

Тема: 2.3 Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Цель: сформировать у учащихся умения и навыки переводить числа из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Теоретическая часть:

Перевод чисел между системами счисления, основания которых являются степенями числа 2(q=2*n), может производиться по более простым алгоритмам. Такие алгоритмы могут применяться для перевода чисел между двоичной (q=2*1), восьмеричной (q=2*3) и шестнадцатеричной (q=2*4) системами счисления.

Перевод чисел из двоичной системы счисления в восьмеричную. Для записи двоичных чисел используются две цифры, то есть в каждом разряде числа возможны 2 варианта записи. Решаем показательное уравнение:

2=2*i. Так как 2=2*1, то i =1 бит.

Каждый разряд двоичного числа содержит 1 бит информации.

Для записи восьмеричных чисел используются восемь цифр, то есть в каждом разряде числа возможны 8 вариантов записи. Решаем показательное уравнение:

8=2*i. Так как 8=2*3, то i=3.

Каждый разряд восьмеричного числа содержит 3 бита информации.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа на лево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нулями.

Переведем таким способом двоичное число 1010012 в восьмеричное:

101 0012 1∙2*2+0∙2*1+1∙2*0 0∙2*2+0∙2*1+1∙2*0 518

Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмиричные цифры:

Двоичные триады

000

001

010

011

100

101

110

111

Восьмеричные цифры

0

1

2

3

4

5

6

7

Для перевода дробного двоичного числа (правильной дроби) в восьмеричное необходимо разбить его на триады слева на право и, если в последней, правой, группе окажется меньше трех цифр, дополнить ее справа нулями. Далее неоходимо триады заменить на восьмеричные числа.

Двоичные триады

110

102

Восьмеричные цифры

6

5

Получаем: А8=0,658.

Перевод чисел из двоичной системы счисления в шестнадцатеричную. Для записи шестнадцатеричных чисел используются шестнадцать цифр, то есть в каждом разряде числа возможны 16 вариантов записи. Решаем показательное уравнение: 16=2*i. Так как 16=2*4, то i=4 бита.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы