Измерения геометрических величин в курсе геометрии 7-9 классов

Различные направления использования измерений геометрических величин при обучении геометрии

Роль измерений в жизни человека невозможно преувеличить. Рассмотрим, какова же роль измерений в курсе геометрии.

Немало слов было сказано о прикладном значении геометрии и роли измерений в ней, как самостоятельного раздела для изучения. Также измерения могут быть использованы и как средство обуче

ния.

Типология задач на измерения

Измерения могут быть использованы как при изучении нового материала, решении задач, доказательстве теорем, так и при закреплении материала. Но прежде чем перейти к рассмотрению способов применения измерений в том или ином случае, рассмотрим виды заданий на измерения:

задания на непосредственные измерения;

задания на косвенные измерения;

задания на косвенные и непосредственные измерения;

задания на измерения с помощью информационных технологий.

В результате проведенного сравнительного анализа школьных учебников по геометрии мы можем сделать вывод: в школьном курсе геометрии основное внимание уделяется вычислению геометрических величин: длин отрезков, градусной и радианной мер углов, площадей, объемов и т.п., – то есть опосредованному измерению. Но нельзя проигнорировать непосредственные измерения. Ведь геометрия возникла в глубокой древности в связи с необходимостью измерять, расстояния, площади земельных участков, возводить постройки и т.п. И в настоящее время любой человек в своей жизни сталкивается с необходимостью что-либо измерять.

Задачи на непосредственные измерения

Рассмотрим задачи на непосредственные измерения. К таким задачам относятся задачи, при решении которых используются только измерительные инструменты: линейка, транспортир и др.

Найти длину отрезков АВ, CD, EF, GH (рис. 19).

Рис. 19

При этом учащиеся проявляют свои знания, умения пользоваться измерительными инструментами.

Найти периметр многоугольника АВCDEF (рис. 20).

Рис. 20

Найти градусные меры углов, указанных на рисунке 21.

Рис. 21

При решении подобных задач ученикам могут быть заданы вопросы:

Что нам нужно измерить? (длину отрезка, градусную меру угла)

Что мы знаем о длине отрезка, о градусной мере угла? (длина отрезка, градусная мера угла выражается некоторым положительным числом)

Каким измерительным инструментом удобно пользоваться? (линейкой, транспортиром)

Также к задачам этого типа можно отнести и измерение площади плоской фигуры с помощью палетки. Важно отметить, что при непосредственных измерениях мы сталкиваемся с понятием погрешности измерения. Поэтому ученики должны понимать, что результаты, полученные при их измерениях неточны. Следующим типом задач, могут быть задачи, в которых использование измерительных инструментов недостаточно. Кроме них необходимо использование дополнительных средств.

Например, найти длину окружности (рис. 22).

Рис. 22 расстояния на местности

При решении подобной задачи возможно использование подручных средств, например, нити. С помощью нити и линейки можно измерить длину окружности.

Также могут быть решены задачи такого типа как измерение.

Например, измерить длину коридора в школе. Это можно сделать с помощью рулетки, мерной ленты, шагами или на глаз.

Измерения расстояний на местности могут быть выполнены непосредственно различными инструментами. В тех случаях, когда достаточны менее точные результаты измерения, могут быть применены измерения расстояний шагами. Рассмотрим, примеры таких измерений. Для шагомерного определения расстояний каждый ученик должен знать среднюю длину своего шага. Длина шага находится путем двух, трехкратного измерения шагами одного и того же расстояния, измеренного рулеткой. Делением расстояния, измеренного рулеткой, на среднее арифметическое числа шагов находится средняя длина шага. Чтобы найти длину шага точнее, можно измерить несколько расстояний. Для удобства может быть заполнена таблица:

Таблица 1

 

Расстояние, измеренное рулеткой, м

Число сделанных шагов

Длина шага, м

Расстояние 1

     
 
 

Приведем пример заполнения такой таблицы (таблица 2).

Среднее арифметическое числа шагов:

Таким образом, длина шага:

Таблица 2

 

Расстояние, измеренное рулеткой, м

Число сделанных шагов

Длина шага, м

Расстояние 1

6

10

0,62

9

10

Развитие глазомера учащихся также имеет большое практическое значение. Привитие навыков в определении расстояний на глаз в различных условиях должно осуществляться в школе систематически. Только постоянной тренировкой в развитии глазомера можно добиться более или менее удовлетворительных результатов.

Начинать упражнения следует с определения на глаз малых расстояний, а по мере совершенствования глазомера переходить к определению больших расстояний. Определяемые на глаз расстояния необходимо проверять путем непосредственного измерения мерной лентой с целью убеждения в качестве глазомера.

В процессе непосредственных измерений, учащиеся поймут, как вычисляются те или иные геометрические величины, с помощью формул, а также смогут оценить все достоинства непосредственных и косвенных измерений. В школьном курсе геометрии большое внимание уделяется задачам на косвенное измерение величин. Косвенные измерения могут быть осуществлены на основании геометрических свойств фигур. Использование учащимися знаний, приобретенных на уроках геометрии, имеет большое образовательное и практическое значение. Учащиеся на личном опыте проведения измерительных работ убеждаются в ценности математических знаний, что несомненно способствует повышению у них интереса к изучению геометрии, а также математики, в целом.

Задачи на косвенные измерения

Рассмотрим, задачи на косвенные измерения, то есть в которых необходимо использовать теорему для нахождения геометрической величины.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы