Измерения геометрических величин в курсе геометрии 7-9 классов

Пример 1. Найти площадь прямоугольного треугольника, есди известны катеты а и b.

Для этого учащимся необходимо вспомнить определение прямоугольного треугольника и формулу, по которой удобно вычислить площадь рассматриваемого треугольника.

Итак, прямоугольным треугольником называется треугольник, у которого один из углов прямой. Площадь прямоугольного треугольника можно найти по формуле:

, где а и b – катеты прямоугольного треугольника (рис. 23). Таким образом, по известным катетам ученики могут найти площадь треугольника, не прибегая к использованию измерительных инструментов.

Рис. 23

5.1.3 Задачи, в которых до методов косвенного измерения, применяются непосредственные измерения

Можно также выделить класс задач, в которых до методов косвенного измерения, применяются непосредственные измерения.

Пример 2. Найти площадь круга.

Для этого, ученикам необходимо применить формулу: . При этом, ученики путем непосредственного измерения могут найти радиус круга, а затем и площадь. Рассмотрим способ нахождения радиуса:

Построим произвольную хорду окружности (рис. 24).

Рис. 24

Построим серединный перпендикуляр m к отрезку АВ.

Прямая m пересекает окружность в двух точках С и D. Середина этого отрезка О – центр окружности (рис. 25).

Рис. 25

Таким образом, ученикам необходимо измерить радиус ОА, а после найти по уже указанной формуле площадь круга.

Также к задачам на косвенные измерения можно отнести некоторые задачи на измерения на местности: например, измерение недоступного расстояния между доступными точками; измерение расстояния между недоступными точками; измерение расстояния до доступной точки.

Пример 3. Измерить ширину озера.

Рис. 26 задачи были использованы признаки равенства треугольников.

Строим произвольный треугольник ABC. На продолжениях АС и ВС откладываем А'С и В'С . Соединив точки А' и В', получим ∆А'В'С = ∆АВС по двум сторонам и углу между ними (рис. 26). Из равенства треугольников следует, что АВ = А'В'. Измерив непосредственно А'В', определим и равное ему недоступное расстояние АВ.

Заметим, что при решении данной

При измерениях на местности часто используют и другие известные теоремы, свойства и признаки:

свойства равнобедренного треугольника;

свойства прямоугольного треугольника;

подобие треугольников;

теорема Фалеса;

теоремы синусов и косинусов и др.

Задачи на измерение геометрических величин средствами информационных технологий

Также при обучении измерениям в курсе геометрии могут быть использованы измерения с помощью информационных технологий. Одной из программ для наглядного иллюстрирования математических процессов является программа «Живая геометрия». Она является наиболее простым и легко доступным средством иллюстрации математических процессов и явлений.

С помощью этой программы возможно измерение следующих величин: длины отрезка; расстояния между двумя точками; периметра; длины окружности; углов; площади; длины дуги; радиуса. Использование данной программы возможно при решении различного рода задач.

Пример 4. Необходимо найти гипотенузу прямоугольного треугольника (рис. 27).

Рис. 27

Ученики могут самостоятельно построить прямоугольный треугольник с использованием данной программы, и измерить необходимые длины. Посмотреть, как изменяется длина гипотенузы в зависимости от изменения длины катетов. Также учащиеся могут проверить результат, путем вычислений. Это можно сделать самостоятельно: по теореме Пифагора: или с использованием программы (рис. 28):

Рис. 28

Так же как и в случае непосредственных измерений мы работаем с приближенными значениями. Применение рассматриваемой программы не только показывает ученикам возможности ее использования и вызывает интерес у учащихся к предмету, в целом, к изучаемой теме, в частности. Также позволяет увидеть и «открыть» некоторые геометрические теоремы.

Таким образом, мы рассмотрели виды заданий на измерения. Теперь перейдем к рассмотрению различных направлений использования измерений в курсе геометрии.

Использование измерений геометрических величин на разных этапах урока геометрии

Как уже было сказано выше, измерения можно использовать на самых различных этапах обучения:

при изучении нового материала;

при закреплении полученных знаний;

при решении задач, выводе формул или установлении каких-либо математических фактов;

для установления межпредметных связей;

для опровержения утверждений и др.

Использование измерений при изучении нового материала.

Например, при изучении площадей треугольника по формуле

.

Ученикам могут быть розданы различные вырезанные из бумаги треугольники с отмеченными на них высотами (рис. 29).

Рис. 29

Учащиеся измеряют длины сторон а и b и длины высот, проведенных к стороне a, а также угол g. И вычисляют площадь треугольника по уже известной формуле.

Для удобства заносят результаты измерений в таблицу:

Таблица 3

 

Длина стороны а

Длина стороны b

Длина высоты hа

sin g

Площадь треугольника

1.

         

2.

         

После нескольких таких измерений, учащиеся могут догадаться, что . Таким образом, сформулировать гипотезу. Ученики при этом пользовались непосредственными и косвенными измерениями.

При изучении, например, теоремы о площади треугольника, вычисляемой по формуле: , могут быть использованы измерения с помощью информационных технологий (рис. 30).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы