Измерения геометрических величин в курсе геометрии 7-9 классов

Данные занести в таблицу:

Таблица 4

 

ÐА

ÐВ

ÐС

ÐА+ÐВ+ÐС

Опыт 1

       

Опыт 2

       

Опыт 3

       

4) Вывод: сумма углов треугольника равна _

Таким образом, учащиеся самостоятельно пришли к формулировке теоремы о сумме углов треугольника. Обсудив вопрос о необходимости доказательства, переходят его осуществлению.

Первичное закрепление полученных знаний. На данном этапе ученики применяют теорему о сумме углов треугольника при решении задач следующего типа:

Определите углы треугольника и его вид, если один его угол равен 25°, а другой – 75°. (ответ: 25°, 75°, 80°, остроугольный)

В треугольнике АВС угол А в 2 раза больше угла В, а ÐС = 45°. Определите ÐА и ÐВ. (ответ: ÐА = 90°, ÐВ = 45°)

Отметим, что большинство задач решается без использования измерительных инструментов, а с помощью уравнения ° (с помощью косвенных измерений).

Здесь мы использовали измерение градусной меры углов при введении нового материала как средство обнаружения математического факта.

Также непосредственные измерения могут использоваться при введении таких тем, как «Смежные и вертикальные углы». Ученики при измерении вертикальных углов убеждаются, что такие углы равны, а сумма смежных углов равна 180°. При изучении темы «Равенство треугольников» школьникам могут быть выданы модели треугольников с равенством различных элементов: равны только углы, равны два/один угол, равны стороны, равны две стороны и угол между ними и т.п. При измерении элементов треугольника ученики «отбросят» варианты, которых недостаточно для равенства двух фигур. И останется только доказать достоверность оставшихся утверждений. Учащиеся могут самостоятельно прийти к формулировке свойств равнобедренных треугольников после ряда измерений: измерение углов, сторон равнобедренного треугольника.

Помимо непосредственных измерений при введении новой темы могут быть использованы и косвенные измерения. Рассмотрим способ их применения при изучении площади трапеции. Здесь удобно использовать именно косвенные измерения, так как большинство формул, связанных с площадями, ученикам уже известны: это и площадь треугольника, и площадь квадрата, параллелограмма.

Площадь трапеции

Тема: «Площадь трапеции»

Цель: сформулировать и доказать теорему о площади трапеции.

В результате изучения данной темы учащиеся должны:

знать формулировку и доказательство теоремы о площади трапеции;

уметь применять теорему при решении задач.

Оборудование: картонные геометрические фигуры: треугольники, квадрат, прямоугольник, трапеции, параллелограмм, учебник Геометрия 7 – 9, Л.С. Атанасян и др.

Фрагмент урока:

Актуализация опорных знаний и умений.

Какая фигура называется трапецией?

(Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие нет.)

Ученикам предлагаются следующие задачи:

Укажите на рисунке 34 трапеции.

а б в

Г д

Рис. 34

(а, г - трапеции)

Из каких фигур можно составить трапецию?

(из треугольника и параллелограмма (рис. 35, а), из треугольника и квадрата или прямоугольника (рис. 35, б), из двух трапеций (рис. 35, в), из нескольких треугольников и др.) Ученикам раздаются картонные фигуры, и они пробуют собрать из них трапецию.

а)

б)

в)

Рис. 35

Что такое площадь, и какими свойствами она обладает?

(Площадь многоугольника – это положительное число, которое показывает сколько раз единица измерения и ее части укладываются в данном многоугольнике.)

Свойства:

Равные многоугольники имеют равные площади.

Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.)

Введение нового материала.

После того, как ученики поняли, что трапецию можно разбить на несколько фигур, площади которых они могут найти, основываясь на известных им свойствах площадей, школьники найдут и площадь трапеции. Рассматривается задача: известно, что высота трапеции BH = 4 см, ВС = 8 см, AD = 16 см. Найти площадь трапеции.

Рис. 36

Учитель поясняет, что данную трапецию можно разбить на две фигуры: треугольник и параллелограмм (рис. 36), площади которых мы уже умеем находить. Таким образом, площадь трапеции АВСD равна сумме площадей треугольника и параллелограмма.

Ученикам предлагается самостоятельно решить эту задачу.

Решение:

Построим отрезок BF, параллельный отрезку CD.

Четырехугольник BCDF является параллелограммом, так как BC || FD (ABCD – трапеция, AD || BC) и BF || CD – по построению.

Найдем площадь параллелограмма BCDF: BC = FD = 8. BH = 4 – высота параллелограмма (так как BH – высота трапеции, то BH | ВС). S = BH*BC = 4*8=32

Найдем площадь треугольника ABF: BH – высота, AF – основание: BH = 4 cм, AF = AD – FD = 16 – 8 = 8 (cм). S = (см2).

Площадь трапеции равна сумме площадей треугольника и параллелограмма: Sтрап=Sпар+Sтр = 32+16 = 48 (см2).

Ответ: 48 см2)

После рассмотрения частного случая можно перейти к рассмотрению общего случая нахождения площади трапеции. Учитель задает школьникам вопрос:

Любую ли трапецию можно разбить на треугольник и параллелограмм, как?

(да, нужно провести через одну из ее вершин прямую параллельную одному из боковых ребер, тогда эта прямая разобьет трапецию на параллелограмм и треугольник)

Итак, нам дана трапеция с основаниями AD = b, BC = a, высотой BH = h. Нужно найти площадь этой трапеции. Учащиеся уже ознакомлены с алгоритмом решения такой задачи:

Провести через одну из вершин трапеции прямую параллельную одному из боковых ребер, тогда эта прямая разобьет трапецию на параллелограмм и треугольник.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы