Математические методы экономических исследований
.
Всего имеем n уравнений для n величин q1, q2, ., qn.
Игровые методы могут применяться для изучения ситуаций, которые не являются в строгом смысле слова конструктивными. Например, ситуации, где вторым игроком является природа.
Тема 9. Имитационное моделирование
1. Понятие имитационного моделирования.
2.
Общая постановка задачи имитационного моделирования.
3. Метод Монте-Карло.
Краткое содержание темы
До сих пор рассматривались методы решения задач, в которых была известна цель (или несколько целей), достижение которой (которых) считалось желательным. Однако далеко не все ситуации таковы. Особенно ими изобилует современный этап прикладных исследований, когда приходится иметь дело со сложными системами, когда наличествует не только множество целевых функций, но далеко не все ясно с количественным выражением этих функций. В данном случае речь может идти не столько о решении тех или иных задач (хотя это присутствует и здесь), сколько об исследовании поведения сложных систем, о прогнозировании их будущих состояний в зависимости от выбираемых стратегий управления.
Итак, практике потребовался метод для исследования сложных систем, и такой метод появился - это имитационное моделирование ("simulation modeling").
Поскольку для сложных систем многие функции, параметры, характеристики носят случайный характер, то для оценки этих атрибутов, как правило, используется аппарат статистических оценок, а сам метод имитационного моделирования иногда называют методом статистических испытаний. Другими словами, это метод вероятностных оценок, а отсюда, по аналогии с игровыми ситуациями Монте-Карло, его также называют методом Монте-Карло.
Идея метода Монте-Карло чрезвычайно проста и состоит в следующем. Вместо того, чтобы описывать исследуемый процесс (как правило случайный) с помощью аналитического аппарата, производится "розыгрыш" процесса (явления) с помощью какой-либо процедуры, дающей случайный результат. Так же как и в реальности конкретное осуществление (реализация) случайного процесса складывается каждый раз по-разному, также и в результате статистического моделирования (розыгрыша) получаем каждый раз новую, отличную от других, искусственную реализацию процесса. Множество получаемых таким образом реализаций далее обрабатывается как статистический материал, и из него получаются нужные вероятностные характеристики требуемого результата.
При получении множества реализаций мы пользуемся случайностью как аппаратом исследования, заставляя случайность работать на себя.
Метод имитационного моделирования, как правило, используется для анализа функционирования сложных систем, когда возникают непреодолимые сложности при попытке построить "строгую" математическую модель изучаемого объекта, содержащего много связей между элементами, разнообразные нелинейные ограничения, огромное количество параметров и т.п. Иногда можно построить такую модель, но использовать ее из-за отсутствия математического аппарата не представляется возможным. В некоторых случаях для исследуемой системы не существует стройной теории, объясняющей все аспекты ее функционирования, а, следовательно, представляется затруднительным формулирование тех или иных правдоподобных гипотез ее поведения.
Далее, реальные системы, как правило, подвержены влиянию различных случайных факторов, учет которых аналитическим путем представляет порой непреодолимые трудности.
С другой стороны, использование математического аппарата дает возможность сопоставить модель и оригинал только в начале и после применения соответствующего аппарата, что затрудняет верификацию модели.
В основе метода имитационного моделирования лежит возможность максимального использования всей имеющейся в распоряжении исследователя информации о системе с тем, чтобы получить возможность преодолеть аналитические трудности и найти ответы на поставленные вопросы о поведении системы.
Имитационное моделирование, как правило, используется в сугубо практических целях.
Основными этапами метода являются:
1. Формулировка основных вопросов о поведении системы и задание параметров, характеризующих состояние системы, т.е. определение вектора состояния.
2. Декомпозиция (разбиение) системы на более простые части - блоки. В один блок объединяются "родственные", т.е. преобразующиеся по близким правилам, компоненты вектора состояния и процессы, их преобразую щие.
3. Формулируются правила и "правдоподобные" гипотезы относительно поведения системы в целом и ее отдельных частей. В каждом блоке может использоваться свой математический аппарат (алгебраические дифференциальные уравнения, математическое и динамическое программирование и т.п.). Именно это, т.е. блочный способ (принцип), дает возможность установить необходимые пропорции между точностью описания каждого блока, обеспеченностью его информацией и необходимостью достижения цели моделирования.
4. Вводится так называемое системное время, которое моделирует ход времени в реальной системе.
5. Формализованным образом задаются необходимые феноменологические свойства систем в целом и отдельных ее частей. (Часто эти свойства не могут быть обоснованы на современном уровне знаний, а опираются на опыт - длительное наблюдение за поведением системы). Иногда одно такое свойство оказывается эквивалентным множеству сложных математических соотношений и с успехом их заменяет, что, конечно, требует глубокого знания системы.
6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.
Как правило, пятый и шестой этапы наиболее просто осуществимы на ЭВМ, поэтому имитационные модели обычно реализуются с использованием специализированных программ, описывающих функционирование отдельных блоков и правила взаимодействия между ними.
Использование реализаций случайных величин требует многократного повторения экспериментов с моделью с последующим статистическим анализом полученных результатов.
Общая постановка задачи
Под имитационным моделированием будем понимать пошаговое моделирование поведения объекта с помощью ЭВМ. Это означает, что фиксируются определенные моменты времени t1,t2, .,tn, и состояние модели определяется (вычисляется на ЭВМ) последовательно в каждом из этих моментов времени. Для реализации этого необходимо задать правило (алгоритм) перехода модели из одного состояния в следующее, т.е. преобразование: , где Yi - состояние модели в i-й момент времени.
Пусть, как обычно, состояние модели определяется вектором: , т.е. m - числами, состояние среды вектором: , n - числами, а состояние управления вектором: , q - числами.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели