Математические методы экономических исследований

Интересной реализацией получения обобщенной экспертной оценки, учитывающей указанные особенности организации и проведения экспертиз, является метод Дельфы.

Этот метод представляет ряд последовательно осуществляемых процедур, направленных на выявление группового мнения по той или иной проблеме. Метод получил наименование по названию города Дельфы, ставшего известным из-за прорицателей-оракул

ов, живших в нем и предсказывающих будущее. Пророчества обнародовались после тщательного обсуждения на совете дельфийских мудрецов.

Метод Дельфы представляет обобщение оценок экспертов, касающихся прежде всего перспектив развития. Особенность метода состоит в последовательном анонимном индивидуальном опросе экспертов, исключающем их непосредственный контакт для уменьшения группового влияния, возникающего при совместной работе экспертов и состоящего в приспособлении к мнению большинства. Работа проводится в несколько этапов. Результаты первого этапа подвергаются статистической обработке. Выявляются преобладающие суждения экспертов и сближаются их точки зрения. Всех экспертов, оценки которых находятся в границах согласованности, знакомят с обоснованиями причин расхождений суждений тех экспертов, оценки которых выходят за указанные границы. Эксперт может изменить свое суждение. Для выявления этого проводится второй тур и т. д.

Метод Дельфы дает возможность улучшить простое усреднение оценок экспертов.

Итак, теперь можно перечислить основные этапы подготовки и проведения экспертизы. Они включают:

· постановку задачи (проблемы), подлежащей экспертизе;

· подбор и выбор экспертов;

· выполнение экспертизы;

· получение обобщенной экспертной оценки;

· формирование и оформление результатов экспертизы.

Для примера представим название некоторых задач и проблем, в решении которых применяются методы экспертных оценок.

Это:

· распределение различных видов ресурсов с установлением приоритетности;

· установление номенклатуры подлежащих выполнению работ для достижения определенных целей в условиях ограничений по различным ресурсам;

· установление удельных ресурсных затрат на выполнение каких-либо работ, норм расхода материалов, нормативной трудоемкости изготовления изделия и его составляющих, стоимости отдельных этапов научно-исследовательских и опытно-конструкторских работ;

· установление возможных и допустимых границ колебания экономических показателей;

· установление параметров календарно-плановых нормативов, размеров партий запуска-выпуска изделий (деталей), величины заделов;

· определение перспективных направлений развития производственной системы, организационно-функциональной структуры;

· многокритериальная оценка деятельности предприятия;

· определение последовательности выполнения работ;

· научно-техническое и экономическое прогнозирование.

Процесс подготовки и проведения экспертизы сопряжен с процессом обработки огромных объемов информации с использованием громадного арсенала экономико-математических средств, методов и моделей. Поэтому получение более достоверных и надежных результатов экспертизы на современном этапе развития программно-технических средств не мыслим без привлечения в процесс экспертирования современных электронно-вычислительных комплексов.

Появление интерактивных режимов функционирования в программно-технологических комплексах дает прекрасную возможность оптимально сочетать неформализуемую интуитивную деятельность, присущую человеку, с неограниченными возможностями ЭВМ по решению формализованных задач.

В настоящее время разработан достаточно представительный набор программных средств типа экспертных и логико-расчетных систем (оболочек), позволяющих за приемлемо обозримое время настроиться на решаемый класс экспертных задач, доведя их до уровня “дружественного” общения между человеком и машиной. Существенной особенностью таких систем является так называемая база знаний, построенная на основе формализуемой части труда экспертов по определенным и конкретным проблемам. Некоторые из этих систем доведены до такого “совершенства”, что позволяют проводить экспертные оценки без участия экспертов-специалистов, которые могут привлекаться только в отдельных случаях, когда система начинает давать значительные сбои.

ДОПОЛНИТЕЛЬНАЯ ТЕМАТИКА

Тема А. Элементы теории вероятности

1. Понятие вероятности. Общие свойства вероятности.

2. Основные формулы теории вероятности.

3. Понятие случайной величины. Дискретная и непрерывная случайная величина.

4. Понятие распределения случайной величины. Основные законы распределения.

Краткое содержание темы

Изложение содержания данной темы в настоящей работе не представляется целесообразным, так как его можно без труда найти в широком круге литературных источников, в том числе тех, которые перечислены в данной работе.

Тема Б. Нелинейное программирование

1. Постановка общей задачи нелинейного программирования.

2. Метод множителей Лагранжа.

3. Выпуклое программирование.

4. Градиентные методы.

5. Метод штрафных функций.

Краткое содержание темы

Постановка общей задачи нелинейного программирования состоит в следующем. Определить максимум (минимум) значения функции:

f(x1, x2, ., xn) (Б.1)

при условии, что переменные удовлетворяют соотношениям:

, (Б.2)

где, f и gi некоторые известные функции, bi - заданные числа.

Решение этой задачи X * = (x1*, x2*, ., xn*), удовлетворяющее (Б.1) и (Б.2), такое, что для любого другого X = (x1, x2, ., xn), удовлетворяющего (Б.2), имеем:

f(x1*, x2*, ., xn*) ³ f(x1, x2, ., xn) - для задачи максимизации;

f(x1*, x2*, ., xn*) £ f(x1, x2, ., xn) - для задачи минимизации.

Соотношения (Б.2) называются системой ограничений. Условия неотрицательности переменных могут быть заданы непосредственно. В евклидовом пространстве E n (Б.2) определяет область допустимых решений поставленной задачи (в отличие от задач линейного программирования эта область может быть не выпуклой).

Если область допустимых решений определена, то нахождение решения задачи (Б.1)-(Б.2) сводится к определению такой точки этой области, через которую проходит гиперповерхность наивысшего (наинизшего) уровня: f(x1, x2, ., xn) = h.

Эта точка может быть как на границе, так и внутри области.

Процесс решения задачи в геометрической интерпретации включает этапы:

· определение области допустимых решений, соответствующих (Б.2) (если она пуста, то решений задачи - нет);

· построение гиперповерхности f(x1, x2, ., xn) = h;

· определение гиперповерхности наивысшего (наинизшего) уровня или установление неразрешимости задачи из-за неограниченности (Б.1) сверху (снизу) на множестве допустимых решений;

· нахождение точки области допустимых решений, через которую проходит гиперповерхность наивысшего (наинизшего) уровня и определение в ней значения (Б.1).

Метод множителей Лагранжа

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы