Математические методы экономических исследований
Итак, этапы решения задачи методом Франка-Вулфа заключаются в следующем:
1. Определяют одно из допустимых решений.
2. Находят градиент функции f в точке допустимого решения.
3. Строят функцию F и находят ее максимальное значение при условиях исходной задачи.
4. Определяют шаг вычислений.
5. По формуле X(k+1) = X(k) + lk(Z(k) - X(k)) находят следующее допустимое решение.
Проверяют необходимость перехода к следующему допустимому решению. В случае необходимости переходят к этапу 2, если такой необходимости нет, то приемлемое решение найдено.
Метод штрафных функций
Пусть имеем вогнутую функцию f(x1, x2, ., xn). Необходимо найти максимум этой функции при условиях: gi(x1, x2, ., xn) £ bi, (i = 1, 2, .,m), xj ³ 0, где gi - выпуклые функции.
Строится функция: F (x1, x2, ., xn) = f (x1, x2, ., xn)+H (x1, x2, ., xn), где функция H(x1, x2, ., xn) определяется системой ограничений и называется штрафной функцией. Она может быть построена многими способами. Чаще всего эта функция строится в виде:
, где
ai ‑ весовые коэффициенты,
qi = bi - gi .
Используя H, последовательно переходят от одной точки к другой до тех пор, пока получится приемлемое решение. При этом координаты последующей точки находят по формуле:
(Б.3)
Из (Б.3) следует, что если предыдущая точка находится в области допустимых решений, то второе слагаемое в квадратных скобках равно 0, и переход к последующей точке определяется только градиентом целевой функции. Если же предыдущая точка не принадлежит области допустимых решений, то за счет указанного слагаемого на последующих итерациях достигается возвращение в область допустимых решений. При этом, чем меньше i, тем быстрее находится приемлемое решение, но точность определения решения снижается. Поэтому в начале i берут малым, постепенно увеличивая.
Итак, процесс решения включает этапы:
1. Определяют исходное допустимое решение.
2. Выбирают шаг вычислений.
3. Находят по всем переменным частные производные от целевой функции и функций, определяющих область допустимых решений задачи.
4. По (Б.3) определяют координаты точки - возможное новое решение.
5. Проверяют, удовлетворяют ли координаты найденной точки системе ограничений задачи. Если не удовлетворяют, то переходят к следующему этапу. Если координаты найденной точки определяют допустимое решение задачи, то исследуют необходимость перехода к последующему решению. Если такой переход необходим, то переходят к пункту 2, иначе решение найдено.
6. Устанавливаются значения весовых коэффициентов и переходят к этапу 4.
Другие рефераты на тему «Экономико-математическое моделирование»:
- Применение методов математической статистики при решении производственных задач
- Оптимизация сетевой модели комплекса производственных работ
- Использование эвристических и экономико-математических методов при решении задач управления
- Статистика культуры и отдыха
- Математическая модель системы в переменных пространства состояний
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели