Математические методы экономических исследований

Тема 4. Задачи на смеси

1. Постановка задачи на смеси.

2. Графический метод решения.

3. Общий алгоритм решения задач линейного программирования.

Краткое содержание темы

Задачи на смеси являются одним из показательных классов задач по линейному программированию в области планово-экономических исследований. На примере таких задач могут быть рассмотрены основные м

етоды решения задач линейного программирования как одного из крупных разделов математических методов экономических исследований.

Классическая задача на смеси ставится следующим образом. Из различных видов сырья объемом соответственно b1, b2, ., bm-1, bm можно изготовить n видов продукции. Пусть цена единицы j-го вида продукции будет cj и для изготовления единицы j-го продукта требуется затратить i-ый вид сырья в количестве aij единиц. Возникает вопрос, какие виды продукции и в каком количестве нужно производить, чтобы получить наибольшую выручку?

Таким образом, нужно определить количество производимой продукции при ограниченных ресурсах, при этом реализация произведенной продукции должна дать максимальную выручку.

Математически описанную задачу можно представить следующим образом.

Пусть - количество j-ой продукции, тогда стоимость всей произведенной продукции можно выразить функцией:

‑ целевая функция.

Следовательно, в задаче идет речь о достижении максимума целевой функции L на множестве различных допустимых значений . Другими словами, критерием оптимальности задачи является: .

Очевидно, далее, что ³ 0 для j = 1, 2, ., n. Количество произведенной продукции не может быть отрицательным. Далее, на единицу j-го вида продукции требуется единиц i-го сырья, т.е. для изготовления единиц j-го продукта потребуется единиц i-го сырья.

Так как один и тот же вид сырья может использоваться для производства любого j-го продукта, то суммарные потребности i-го сырья на все j-ые продукты не должны превышать имеющихся ресурсов b1, b2, ., bm сырья, т.е.

.

Таким образом, приходим к следующей математической задаче.

Найти: при условии, что и .

Очевидно, что условиям задачи может удовлетворить множество наборов значений xj, где j = 1, 2, ., n. Каждый из таких наборов носит название допустимого решения (стратегии, управления, плана). Решение, при котором достигается max целевой функции, называется оптимальным.

Графический метод решения задачи на смеси вытекает из следующих основных свойств задач линейного программирования:

· существует выпуклый многоугольник (многогранник) допустимых решений;

· оптимальное решение задачи достигается в одной из вершин многоугольника допустимых решений.

Следовательно, если построить гиперплоскость целевой функции (критерия) нулевого уровня, то, передвигая ее в сторону возрастания значений переменных, можно определить первую или последнюю вершину многоугольника допустимых решений для поставленной задачи, с которой передвигаемая гиперплоскость впервые встречается или покидает область многоугольника. В частном случае гиперплоскость может представлять прямую линию. Соответственно первая вершина встречи будет определять минимальное значение целевой функции, а последняя вершина встречи - максимальное.

Общий алгоритм решения задач линейного программирования

Без ограничения общности имеем следующую задачу линейного программирования:

, (4.1)

.

Найти среди допустимых , j = 1, 2, ., n, такие, что:

.

Основные шаги решения сформулированной задачи следующие.

1. Находится хотя бы одно из неотрицательных решений .

2. Подставляем в систему полученное решение, в результате чего получаем новую систему, эквивалентную исходной:

.

3. Подставляем выражения основных переменных в L:

.

4. Применяем последовательность тождественных преобразований к полученной системе и линейной форме до тех пор, пока не исчезнут положительные коэффициенты при переменных в линейной форме, т.е. нарушатся условия ее существования.

После конечного числа указанных шагов (если нет зацикливания) находится оптимальное решение поставленной задачи. В этом заключается суть симплекс-метода.

Возникает вопрос. Как найти хотя бы одно неотрицательное решение системы (4.1)?

Сводим исходную систему (4.1) к виду:

, i = 1, 2, ., m. (4.2)

Если в этой системе имеется переменная, входящая только в одно уравнение, и коэффициент при ней имеет знак «+», то уравнение можно разрешить относительно этой переменной.

Считаем, что в (4.2) уравнения разрешены относительно всех таких переменных, тогда, сделав перенумерацию, имеем:

(4.3)

l = 1, 2, ., l0;  = 1, 2, ., 0;

l0 + 0 = m; l0 + k = n; .

Любое уравнение в (4.3), неразрешенное относительно какой-либо переменной, будем называть 0-уравнением.

Для системы (4.3) неотрицательное решение отыскивается последовательными тождественными преобразованиями, удовлетворяющими следующим условиям:

1. Отыскиваем 0-уравнение, у которого свободный член (если такого свободного члена нет, то значения переменных xl = bl, , l = 1, 2, ., l0; j = 1, 2, ., k образуют неотрицательное решение системы (4.3)). Пусть это будет i-ое уравнение.

2. Отмечаем в i-ом уравнении положительный коэффициент .

3. Находим разрешающий элемент и производим торжествен­ное преобразование (4.3).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы