Локальные формации с метаабелевыми группами
Случай 2. Пусть . Тогда входит в и является -группой. Так как , то height=21 src="images/referats/632/image356.gif">абелева. Пусть – максимальная подгруппа группы , не содержащая . Тогда , , , . Отсюда, ввиду единственности , заключаем, что , a значит, . По лемме 3.10 является -группой. Но тогда и является -группой, причем . Мы получаем, таким образом, что для любого . Но тогда , так как слабо -замкнута. Последнее означает, что -центральна в , что противоречит равенству . Снова получили противоречие.
Теорема доказана.
Следствие 4 Пусть группа имеет две нормальные -сверхразрешимые подгруппы, индексы которых взаимно просты. Тогда -сверхразрешима.
Для того чтобы получить это следствие, достаточно заметить, что построенный экран удовлетворяет условию теоремы при .
Следствие 5 Пусть группа имеет две нормальные сверхразрешимые подгруппы, индексы которых взаимно просты. Тогда сверхразрешима.
Теорема Слепова 6 Пусть формация имеет такой локальный экран , что для любого простого формация либо совпадает с , либо входит в и является -замкнутой. Тогда -замкнута.
Доказательство. Повторяем с очевидными изменениями доказательство теоремы .
Теорема Слепова 7 Пусть – максимальный внутренний локальный экран формации . Формация -замкнута (слабо -замкнута, ) тогда и только тогда, когда для любого простого формация -замкнута (соответственно слабо -замкнута).
Доказательство. Достаточность вытекает из теорем и . Пусть -замкнута (слабо -замкнута, ). Пусть , где – нормальные -подгруппы (нормальные -подгруппы с попарно взаимно простыми индексами). Так как , то . Покажем, что .
Пусть , где , – элементарная абелева -группа. По лемме 3.11 для любого . Так как -замкнута (слабо -замкнута), то отсюда вытекает, что . Если – пересечение централизаторов в всех -главных факторов группы , то
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах