Локальные формации с метаабелевыми группами
Отсюда следует, что – -группа.
Лемма5.1. Пусть – некоторая неприводимая абелева группа автоморфизмов -группы и . Тогда – циклическая группа порядка, делящего . Кроме того, – наименьшее натуральное число, удовлетворяющее сравнению .
Доказательство. Будем считать, что – аддитивная абелева группа. Тогда можно рассматривать как правое векторное пространство размерности над полем из элементов. Пусть – коммутативное подкольцо кольца , порожденное элементами и . Ввиду условия является неприводимым правым -модулем (определения, связанные с -модулями, см. у Кэртиса и Райнера [1]). По лемме Шура, – тело. Так как коммутативно, то . Легко видеть, что множество всех ненулевых элементов из замкнуто относительно операции умножения и, следовательно, является группой. Поэтому – поле. Так как -модуль неприводим, то для любого ненулевого ; но тогда отображение , является -гомоморфизмом -модуля на . Так как ядро есть идеал поля , то – изоморфизм. Следовательно, . Известно, что мультипликативная группа конечного поля циклическая. Поэтому циклическая и делит .
Пусть – наименьшее натуральное число, удовлетворяющее сравнению . Тогда делит . Хорошо известно, что поле порядка содержит подполе порядка . Так как циклическая группа содержит точно одну подгруппу каждого возможного порядка и делит , то . Но тогда и . Лемма доказана.
10. Формация . Пусть – непустая формация, – такой локальный экран, что для любого простого . Применяя следствие 7.1.1 можно увидеть, что – экран формации . В частности, формации и являются локальными формациями.
Пусть – локальный экран некоторой подформации из . Применяя леммы 3.3 и 4.3, видим, что является локальным -экраном формации . Таким образом, каждая локальная подформация формации имеет внутренний локальный -экран. В частности, любая локальная подформация формации имеет внутренний локальный -экран.
Локальные формации с заданными свойствами
Пусть – некоторая операция, – локальный экран формации . Естественно возникают два вопроса:
1) Будет ли -замкнутой, если -замкнута для любого простого ?
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах