Локальные формации с метаабелевыми группами

Предположим теперь, что . Ясно, что . Так как

то нильпотентна сту

пени . Так как , то изоморфна и имеет ступень , а потому согласно лемме 2.6 ее нормальное замыкание в имеет ступень . Так как нормализует и , то нормальна в . Итак, , причем . По индукции

Для группы и ее нильпотентной нормальной подгруппы ступени теорема также верна по индукции. Поэтому

Теорема доказана.

Теорема 2.4. (Нейман [1]) Формация, порожденная разрешимой группой, содержит лишь конечное число подформаций.

Доказательство. Пусть – подформация формации . Если , то по теореме 2.3 имеет место , что и требуется.

Экраны

Недостатком понятия групповой функции является то, что не всегда уплотнение -центрального ряда нормальными подгруппами является -центральным рядом.

Определение 3.1. Отображение класса всех групп в множество классов групп назовем экраном, если для любой группы выполняются следующие условия:

1) – формация;

2) для любого гомоморфизма группы ;

3) .

Из условия 2) вытекает, что экран принимает одинаковое значение на изоморфных группах, т.е. является групповой функцией в смысле определения 3.1. Кроме того, видно, что если – экран, то каждый f-центральный ряд после удаления повторений может быть уплотнен до f-центрального главного ряда, а значит, класс групп, обладающих f-центральными рядами, совподает с формацией .

Лемма 3.1. Пусть – экран, – группа операторов группы , – некоторая нормальная -допустимая подгруппа из . Если обладает нормальным -допустимым рядом, факторы которого -центральны относительно , то один из таких рядов проходит через .

Доказательство. Пусть дан ряд, удовлетворяющий условию леммы:

Пусть . Тогда ряд

будет искомым. В этом нетрудно убедиться, используя определение экрана и -изоморфизмы:

Лемма 3.2. Справедливы следующие утверждения:

1) пересечение любого непустого множества экранов также является экраном;

2) объединение любой непустой цепи экранов также является экраном.

Доказательство. Первое утверждение очевидно. Пусть непустое множество экранов является цепью, т.е. линейно упорядочено (с отношением частичной упорядоченности , введенным в определении 3.5). Тогда для любой группы множество формаций линейно упорядочено относительно включения, а следовательно, ввиду леммы 1.1 объединение является формацией. Тем самым лемма доказана.

Определение 3.2. Экран назовем:

1) p-однородным, если он p-постоянен и для любой группы и ее силовской p – подгруппы имеет место ;

2) однородным, если он p-однороден для любого простого p;

3) локальным, если он является локальной групповой функцией;

4) композиционным, если для любой группы имеет место , где пробегает все крмпозиционные факторы группы

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы